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ABSTRACT

Context. In the first two papers of this publication series, we present a comprehensive library of synthetic Event Horizon Telescope (EHT)
observations and used this library to train and validate Bayesian neural networks for the parameter inference of accreting supermassive
black hole systems. The considered models are ray-traced general relativistic magnetohydrodynamic (GRMHD) simulations of Sgr A∗
and M87∗.
Aims. In this work, we infer the best-fitting accretion and black hole parameters from 2017 EHT data and predict improvements that
will come with future upgrades of the array.
Methods. Compared to previous EHT analyses, we considered a substantially larger synthetic data library and the most complete set of
information from the observational data. We made use of the Bayesian nature of the trained neural networks and apply bootstrapping of
known systematics in the observational data to obtain parameter posteriors.
Results. Within a wide GRMHD parameter space, we find M87∗ to be best described by a spin between 0.5 and 0.94 with a retrograde
MAD accretion flow and strong synchrotron emission from the jet. Sgr A∗ has a high spin of ∼ 0.8 – 0.9 and a prograde accretion flow
beyond the standard MAD/SANE models with a comparatively weak jet emission, seen at a ∼ 20◦ – 40◦ inclination and ∼ 106◦ – 137◦
position angle. While previous EHT analyses could rule out specific regions in the model parameter space considered here, we are able
to obtain narrow parameter posteriors with our Zingularity framework without being impacted by the unknown foreground Faraday
screens and data calibration biases. We further demonstrate that the Africa Millimeter Telescope extension to the EHT will reduce
parameter inference errors by a factor of three for non-Kerr models, enabling more robust tests of general relativity.
Conclusions. Our results agree with multiwavelength constraints from the literature. It will be instructive to produce new GRMHD
models with the inferred interpolated parameters for in depth model-data comparisons and to study their accretion rate plus jet power.

Key words. accretion, accretion disks – black hole physics – techniques: high angular resolution – techniques: interferometric –
galaxies: active

1. Introduction

With the Event Horizon Telescope (EHT), we imaged the super-
massive black holes in the centers of Messier 87* (M87∗, Event
Horizon Telescope Collaboration et al. 2019a) and Sagittarius A*
(Sgr A∗, Event Horizon Telescope Collaboration et al. 2022a).
In Event Horizon Telescope Collaboration et al. (2019d, 2022d,
2021b, 2023, 2024), selections of general relativistic magneto-
hydrodynamics (GRMHD) models are scored against specific
observational EHT and multiwavelength data products.

The scoring is facilitated through electromagnetic observables
computed from the GRMHD models; the synchrotron emission
at a wavelength of 1.3 millimeter is predicted with general rela-
tivistic ray-tracing methods (e.g., Gold et al. 2020; Prather et al.

2023). Below, we list the key physical parameters of interest in
the ray-traced GRMHD models considered in this study:

1. Given the black hole mass M and angular momentum J mea-
sured with respect to the accretion flow, the dimensionless
black hole spin a∗, given via a∗ = cJG−1M−2, where c and G
are the speed of light and the gravitational constant, respec-
tively. For our “standard” models that we mostly considered
here, the static Kerr spacetime metric (Kerr 1963) varies only
with a∗, as we fix the masses for Sgr A∗ and M87∗ to be
4.14 × 106 M⊙ and 6.2 × 109 M⊙, respectively.

2. For the considered Kerr-Newmann solutions, the dimension-
less black hole charge q∗ (Newman et al. 1965). These models
were ray-traced only in Stokes I.

3. For the models that go beyond general relativity, the influ-
ence of a dilaton scalar field in the Einstein-Maxwell-Dilaton-
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Fig. 1. Correlated flux densities in Jansky (Jy) and visibility phases in degrees (deg) with standard deviation error bands computed from 1000
bootstrapping realization of the 2017 April 11 M87∗ (left panels) and April 7 Sgr A∗ (right panels) observational EHT data. The measurements are
plotted as a function of baseline length in units of the λ 1.3 mm observing wavelength. The displayed Stokes parameters show the total intensity (I),
linear polarization (Q&U), and circular polarization (V).

Axion theory of gravity (García et al. 1995). The dilaton
GRMHD models used in this work are described in detail in
Mizuno et al. (2018) and Röder et al. (2023). These models
were ray-traced only in Stokes I.

4. The MAD or SANE magnetic state of the accretion disk
(Event Horizon Telescope Collaboration et al. 2019c, 2022d).
Most MAD models are more variable and launch more pow-
erful jets compared to their SANE counterparts.

5. The coupling between the temperatures of the protons and
electrons Rhigh (Mościbrodzka et al. 2016). It is mostly the
temperature of the electrons in the accretion disk and less so
the strongly magnetized jet region that is sensitive to the Rhigh
parameter.

6. For Sgr A∗, the orientation (or position angle) θPA of the
source on the sky and the inclination angle ilos, with which
the source is oriented with respect to our line of sight. Both
θPA and ilos parameters are measured relative to the accretion
flow angular momentum vector.

In Janssen et al. (2025a), a library of synthetic EHT observa-
tions of M87∗ and Sgr A∗ are created from a library of GRMHD
simulations that span the model parameter space listed above.
Those parameters are then used as labels for the synthetic data to
enable the supervised learning of Bayesian artificial neural net-
works (BANNs). We make use of the Zingularity framework for
the BANN training and validation, as described in Janssen et al.
(2025b). Here, we applied two trained networks to observational
Sgr A∗ and M87∗ EHT data.

Compared to previous EHT analyses, we utilized higher-
quality observational data produced by an improved calibration
scheme as described in Janssen et al. (2025a). Furthermore, we
considered a wider range of GRMHD models and systematics
that affect the EHT data than prior works. Our BANN implemen-

tations were trained to infer GRMHD model parameters based on
salient features in the M87∗ and Sgr A∗ EHT data with conserva-
tive uncertainty estimates (Janssen et al. 2025b). For the GRMHD
parameter inference, we considered the full Stokes information
content of the EHT for the first time, instead of relying on derived
data quantities.

In Section 2 of this work, we describe the data used for the
BANN training and parameter inference. In Section 3, we briefly
review the training of our networks and then show the results
when applying the trained BANNs to observational data in Sec-
tion 4. These results are discussed in Section 5 and we present our
conclusions in Section 6. We finish with a description of the data
and code availability in Section 7, allowing others to reproduce
our results.

2. Data

The EHT interferometric array measures Fourier components of
the sky brightness distribution at millimeter wavelengths. The
coverage of the projected baseline vectors between pairs of EHT
antennas is commonly given as (u, v) vectors in units of the ob-
serving wavelength.

The observational data used in this work was taken by the
EHT in 2017 (Event Horizon Telescope Collaboration et al.
2019b, 2022b) within a 226.1 - 228.1 GHz frequency band. We
based our analysis on the (u, v) coverage and data taken on April
7 for Sgr A∗ observations and April 11 for M87∗. The coverage
and noise properties of the measurements were used for the neu-
ral network training with GRMHD synthetic data (Janssen et al.
2025a). Amplitudes and phases of the observational data used
for the subsequent GRMHD parameter inference are shown in
Figure 1.
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Fig. 2. Visualization of training datasets with parameters close to our best-fitting BANN inferences. The top row displays example total intensity
ray-traced ground-truth model images on logarithmic scales with varying dynamic ranges. Top left corners show the type of model, top right corners
show the model parameters: spin a∗ = s, Rhigh = r, and ilos = l parameters are listed in a shorthand notation as as, Rr, and il. The Sgr A∗ models are
displayed here with θPA = 0. The standard models are based on the Kerr metric (see Section 3 text). Distributions of normalized visibility amplitudes
and phases with standard deviation error bands computed from all synthetic data training samples of each model are plotted in the middle and
bottom rows, respectively. These visibilities are depicted for all Stokes parameters. For the unpolarized dilaton models, the polarized data probes
only instrumental effects and are faded out.

Synthetic datasets with parameters close to our BANN posteri-
ors are shown in Figure 2, alongside their corresponding ground-
truth GRMHD models. Here, we can see how only the linear
polarization data shows distinguishing features between the two
M87∗ models with different spins. We note that we generally do
not expect an exact match between the Figure 1 observational
and Figure 2 synthetic data. Firstly, the Figure 2 models only
roughly match the inferred optimal parameters by our BANNs; a
limitation of the GRMHD sampling. We know that small changes
in model parameters can have significant effects on the visibility
data (Section 7.3 of Janssen et al. 2025b). Secondly, the BANN
inference does not use all of the data equally but focuses on
salient features that can be used to differentiate between model
parameters. For example, the Stokes U phase of Sgr A∗ at a
(u, v)-distance of around 1Gλ, which is sensitive to the larger
scale orientation of the polarization, does not match between the
shown Kerr (“standard”) polarized Sgr A∗ model data and the

observations. Given the similarity of the model parameters, the
Stokes I visibilities from the Kerr and dilaton Sgr A∗ models
are similar even though the underlying spacetime metrics are
different.

We made use of observational ‘CASA’ data calibrated with the
Rpicard (Janssen et al. 2018, 2019) pipeline. The characteristics
of the BANN training sets are akin to the CASA data (Roelofs
et al. 2020). In Janssen et al. (2025a), we presented a recent
upgrade to the CASA data, which we make use of for the first
time here, and describe the synthetic training data generation
process in detail.

3. Neural network training

We used the Zingularity framework to select the best BANN ar-
chitectures for Sgr A∗ and M87∗ from a survey and trained them
on our GRMHD synthetic data library as described in Janssen
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Fig. 3. Zingularity performance diagnostics for various neural network training runs. The validation error is computed from normalized labels of
validation data not seen by the network during training. The mean absolute error (MAE) is computed as the average of all validation samples for
normalized regression labels. The classification error (Class. error) is defined as one minus the network’s accuracy, i.e., the fraction of misclassified
validation samples. Panel (a) shows the fiducial models for Sgr A∗ and M87∗ in red and green, respectively. Here, we show the Sgr A∗ model with a
training length of 60 epochs; the 50 epoch model looks equivalent. For M87∗, validation errors are overall smaller compared to Sgr A∗ and the
classification errors get numerically close to zero beyond the logarithmic y-axis limit displayed in the figure here. Panel (f) also shows the training
errors as gray curves.

et al. (2025b). For Kerr Sgr A∗, we two equally viable models,
that only differ in the number of training epochs (60 vs. 50). For
our other networks (M87∗ and dilaton Sgr A∗), we found sin-
gle sets of best parameters that are used to make single fiducial
models. For the training, we used the Swish activation function
(Ramachandran et al. 2017) and RMSProp optimization algo-
rithm. For both Sgr A∗ and M87∗, we employed similar network
architectures, but with different numbers of connections and reg-
ularization methods. These hyperparameters were determined
through parameter surveys. The employed Bayesian architecture
is a combination of a ResNet (He et al. 2015) with subsequent
variational fully connected layers.

The network training diagnostics of our fiducial models can be
compared against our exotic models shown in the same Figure 3.
Similarly, we can compare the capabilities of the current EHT to
predictions for planned array upgrades. For our standard Sgr A∗
and M87∗ BANNs, we achieved typical validation errors of about
10 % and 0.3 %, respectively.

The synthetic data generation process and BANN architec-
tures used for the training are the same for the standard and
exotic models. As the exotic models were ray-traced only in total
intensity, the training is limited to Stokes I data, leading to rela-
tively poor performance. For the dilaton models, we see a similar
network performance compared to the Sgr A∗ Stokes I test of
Janssen et al. (2025b). A comparison of panel (b) with (c) shows
how the planned Africa Millimeter Telescope (AMT, Backes et al.
2016) improves validation errors of the dilaton model parameters
by a factor of three on average. For a fair comparison, we used
the same 2017 EHT antennas with identical sensitivities in both
cases. We attribute the strong impact of the AMT primarily to
the increased northeast and southwest resolution (La Bella et al.
2023) as well as the close (u, v) baselines from the South Pole

to Chile and the AMT. These “crossing” tracks can be used to
remove systematics from the data after the close-together Chile
sites have been calibrated based on the total flux density of the
source (e.g., Section 4.2 in Janssen et al. 2022).

The bottom panels of Figure 3 present our network training
tests for Kerr-Newman models. As a baseline test, we first train
on our standard Sgr A∗ models when only using total intensity
data: Validation errors close to 10 % are reached only for the spin
parameter, as shown in panel (d). For the Kerr-Newman models,
the network failed to train on the synthetic data and no reliable es-
timations could be obtained for any parameter, as shown in panel
(e). We attribute the failure of fitting spin to the degeneracy with
charge in the Kerr-Newman metric (Janssen et al. 2025a). With
additional dishes from the ngEHT project (Doeleman et al. 2019,
2023) joining EHT observations, only marginal improvements
can be achieved, as shown in panel (f). The errors on the training
data itself follow the validation errors in (a) to (e). For (f), the
training error differs from the validation error and is decreasing.
With the amount of data from the extended baseline coverage,
it will likely be possible to find a suitable network architecture
to train on the Kerr-Newman features without the problematic
overfitting seen here.

4. GRMHD parameter inference

For each observational dataset, we created 1000 bootstrapped
realizations with varying polarization leakage, partially corre-
lated telescope gain plus gain curve errors, and thermal noise
as described in Section 6.2 of Janssen et al. (2025b). Parameter
posteriors were formed from 1000 inference passes through our
BANNs for each realization of the observational data.
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Figure 4 shows the results from applying our fiducial M87∗
BANN to the April 11 observational data. The data favor MAD
models with a large Rhigh = 160 parameter. These models produce
powerful outflows with a strong jet contribution to the synchrotron
emission. The training data had a maximum Rhigh value of 160, so
it might be that a model with an even higher Rhigh would describe
the data better. The equivalent high lepton energies could be
produced by nonthermal effects such as magnetic reconnection,
which would give a different energy distribution function. For
the spin, our network infers values in the range of -0.5 to -0.94,
clearly preferring retrograde accretion.

Figure 5 shows the results from applying our two fiducial
Sgr A∗ BANNs to the April 7 observational data. The data are
inconclusive concerning the magnetic state of the accretion flow.
MAD models describe the polarization quantities well, while
SANE models are less problematic in terms of excess variability
compared to the observations, but see also Salas et al. (2025).
A model beyond the standard MAD/SANE dichotomy might
work better here. The spin parameter gives a clear preference
toward high ∼ 0.8 – 0.9 values and a prograde accretion flow.
Furthermore, the spin axis is oriented close to the line of sight at
an angle of about 162◦ (29◦ for the other model) and at θPA ∼ 106◦
– 137◦ east of north in the plane of the sky. Due to the symmetry
of the GRMHD models, 162◦ ilos corresponds to 18◦ but for
an opposite sense of rotation of the accretion flow. Within the
uncertainty from our ilos training data sampling in 20◦ steps,
the two BANNs consistently predict small inclination angles of
Sgr A∗’s spin axis with respect to our line of sight. Evidently,
the direction of the accretion flow direction cannot be discerned.
The difference between the two position angles inferences can
also be understood from the θPA = 90◦, 120◦, 150◦ sampling of
the training data: the inferred values fall on opposite sites of the
middle grid value. The low Rhigh ∼ 14 value corresponds to a
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dominant emission from the accretion flow via hot electrons in
the disk.

These Sgr A∗ results have been obtained with the level of data
calibration described in Event Horizon Telescope Collaboration
et al. (2022b) and Janssen et al. (2025a). We note that consis-
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tent posteriors with no visible differences are obtained from data
that has been processed with additional model-dependent calibra-
tion steps described in Section 2.2 of Event Horizon Telescope
Collaboration et al. (2022c). We attribute this to the robustness
of our BANNs against gain errors in the data, learned from the
simulation of data corruption effects in the training data. The
Event Horizon Telescope Collaboration et al. (2024) GRMHD
scoring results depend on assumptions made about the origin
of the Faraday rotation measure (RM). The RM has a constant
external component and an internal time-variable component
(Goddi et al. 2021; Wielgus et al. 2024). Only the internal com-
ponent can be simulated in the small computational domain of
our GRMHD models. We found that our BANN is not using the
constant RM component as a salient model-discriminating data
feature; we get identical posteriors when de-rotating the Sgr A∗
Stokes Q,U visibilities by 50 % or 100 % of the overall measured
RM = −4.65 × 105 rad/m2. Applying a time-variable RM to the
data on the other hand does change the results. Evidently, our
BANN has trained on the internal time-variability of Q,U phases
as discriminating factors for a∗ and ilos. We note that the images
across our model library do show differences in their overall
electric vector position angle orientations, which is equivalent to
having different constant RM components.

Figure 6 is the posterior from the April 7 observational data
obtained from our dilaton BANN. All parameters, in particular
Rhigh ∼ 16 and θPA ∼ 135◦, agree well with the standard model
results. For this model that goes beyond standard GR, also the
MAD/SANE classification is inconclusive. We note that the dila-
ton model considered here is nonrotating and does not reach
fully developed MAD states as the amount of magnetic flux accu-
mulating near the event horizon remains modest. The small 10◦
difference in inclination angle is well within the uncertainties and
likely related to the different discrete ilos sampling values of the
training data. Closest to the inferred values of 29◦ and 39◦, these
are ilos = 10◦, 30◦ for the standard models and ilos = 20◦, 40◦ for
the dilaton models, respectively. We note that no ilos > 90◦ mode
can be inferred for the dilaton models, as the ray-tracing was only
done up to a maximum inclination of 60◦.

The consistency of parameter inference between the dilaton
and fiducial Sgr A∗ models is noteworthy, given that the dilaton
BANN trained only on Stokes I data, which we have shown to
not work for M87∗. We attribute this to the intrinsic dilaton model
variability measured across different baselines over the course of
a single very long baseline interferometry (VLBI) observation.
With the help of this variability, models with different parameters
can be distinguished.

Our individual BANNs are interpolating between training
values for many parameters1, with no wide multimodal posteri-
ors. This latter case is a “failure mode” of our BANNs, when
the variational inference runs on data that are difficult to charac-
terize (Janssen et al. 2025b). Compared to GRMHD validation
data, wider posteriors are obtained on the observational data. Ev-
idently, the observational data cannot be perfectly described by
GRMHD models due to missing physics and/or the incomplete
sampling of model parameters. Thus, the observational parameter
uncertainties are larger than the BANN validation errors. Yet,
GRMHD simulations are currently the best models we have to
describe the horizon-scale emission of low-luminosity AGN in a
self-consistent manner. Barring the SANE/MAD magnetic state
inference, Sgr A∗ has relatively narrow posteriors even though the

1 We impose no bound to the parameters our BANNs could infer; in fact
it is easy to devise a network that would predict unphysical GRMHD
model parameters.

training validation errors are larger than for M87∗. Without strong
jet emission from accelerated particles and with an extremely low
accretion rate, the Sgr A∗ data are quite well described by the
ideal GRMHD models.

5. Discussion

The GRMHD models underlying our BANN training data assume
the presence of a magnetized turbulent accretion flow surround-
ing a supermassive compact object. The initial gaseous torus
is aligned with the equatorial plane of the black hole (i.e., the
accretion disk is not tilted). The gas is assumed to be pure hy-
drogen. Pair production and radiative cooling processes are not
simulated. The electron distribution function is assumed to be
thermal, neglecting particle acceleration processes and nonideal
MHD processes. Even though our analysis is model-dependent,
we sampled a broad parameter space. Thus, it is instructive to put
our inference results into perspective.

Our M87∗ analysis favors MAD models with large Rhigh val-
ues and a∗ between −0.5 and −0.94, which have powerful out-
flows and strong synchrotron emission from the jet. The proba-
bility density likely peaks at those particular values because they
are two neighboring values in our GRMHD training data grid
space. We also note that past EHT image scoring analyses have
disfavored the MAD a∗ = −0.94 models (Event Horizon Tele-
scope Collaboration et al. 2019c, 2021b). We thus argue for the
“true” spin of a best-fitting GRMHD model to be most likely at
an intermediate −0.94 < a∗ < −0.5 value. The strong preference
for a MAD accretion in M87∗ is in agreement with past EHT
analyses. Furthermore, the inferred model parameters satisfy jet
power constraints measured at larger spatial scales (Event Hori-
zon Telescope Collaboration et al. 2019c; Nemmen 2019). The
black hole counter rotation fits in the picture of M87∗ being an
elliptical galaxy likely affected by past mergers (e.g., Volonteri
et al. 2007; Raimundo et al. 2023). Mergers can naturally explain
the large spin (e.g., Berti & Volonteri 2008), while the black hole
spin-down will not be too extreme in the strongly sub-Eddington
accretion of M87∗, even for a retrograde MAD flow (e.g., Narayan
et al. 2022; Lowell et al. 2024).

Qiu et al. (2023) trained a random forest machine learning
model on a few predetermined EHT observables and infer high-
spin retrograde models with large Rhigh values for M87∗. Our
findings are in excellent agreement with Qiu et al., who have used
a similar GRMHD library but without the full forward modeling.
In our work, we only considered models where the magnetic field
polarity is aligned with the accretion disk angular momentum
vector on large scales. Qiu et al. (2023) and Joshi et al. (2024)
have shown that these models are preferred over models with
anti-aligned polarity. The field polarity mainly affects circular
polarization, which does not yield strong model constraints in the
2017 EHT data (Ricarte et al. 2021; Event Horizon Telescope
Collaboration et al. 2023).

The high spin value of a∗ ∼ 0.8 – 0.9 inferred for Sgr A∗ by
our fiducial network agrees with mounting evidence from inde-
pendent analyses in the literature, which suggest a spin > 0.5.
From the Eckart et al. (2018) literature overview of several model-
dependent radio, near-infrared, and X-ray data analyses, a slight
tendency for a∗ > 0.5 crystallizes. Recent combined Chandra
plus VLA modeling results find a∗ = 0.9 ± 0.06 when assuming
the presence of a collimated outflow (Daly et al. 2024). From
the analysis of ALMA light curves, Wielgus et al. (2022b) find
hints of a positive spin and Yfantis et al. (2024a) find a∗ > 0.8,
but noted a weak spin-dependence of their results. In early fits
of GRMHD models to the Sgr A∗ spectral energy distribution
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(SED) and initial VLBI size constraints, high spin values were
also preferred (Mościbrodzka et al. 2009). Finally, the best-bet
model from our recent EHT analysis has a∗ = 0.94 (Event Hori-
zon Telescope Collaboration et al. 2024). One should note the
fundamental difference of constraint-based EHT modeling com-
pared to our BANN inference. Additionally, the EHT modeling
assumed the RM to be external and discarded the model vari-
ability problem (Event Horizon Telescope Collaboration et al.
2022d; Wielgus et al. 2022a). We attribute the stark difference
in the electron temperature coupling factor – Rhigh = 160 of the
a∗ = 0.94 model versus a much lower value inferred here – to
these fundamental analysis differences. Similarly, the discrep-
ancy between the prograde accretion flow (positive a∗) inferred
here and the preference for a retrograde MAD flow in Joshi et al.
(2024) can be traced to the difference of our approach from the
standard GRMHD scoring and the different observational data
being used. For a detailed discussion of how the black hole spin
can be inferred from EHT data, we refer to Ricarte et al. (2023).

We find Sgr A∗’s spin axis to be closely aligned with our
line of sight, consistent with earlier findings based on GRAVITY
polarimetric plus astrometric measurements of flares (Gravity
Collaboration et al. 2018; GRAVITY Collaboration et al. 2020;
Gravity Collaboration et al. 2023) as well as ALMA light curves
(Wielgus et al. 2022b; Levis et al. 2024; Yfantis et al. 2024a).
These studied Q −U loops display a clockwise rotation on the
sky. For our two BANNs, the inferred values are ilos = 28.9+7.5

−6.3
degrees and ilos = 161.7+2.0

−2.3 (18.3+2.3
−2.0) degrees. Taking the Q −U

loop measurements into account, ilos = 162◦ is preferred, as incli-
nations larger than 90 degrees correspond to a clockwise accretion
flow rotation on the sky in our GRMHD models. Yet, it is worth
noting that the super- (rather than sub-)Keplerian motion of a
hot-spot describing the GRAVITY Q−U loops (Matsumoto et al.
2020; Yfantis et al. 2024b) speaks for an emitting region outside
of the standard GRMHD accretion flow. Matsumoto et al. (2020),
Lin et al. (2023), and Antonopoulou & Nathanail (2024) for ex-
ample successfully fit the polarization loops with outflow models.
For prograde accretion, it is expected that hot spots in outflows
and/or current sheets outside of the bulk accretion flow would
follow the accretion direction of rotation. Thus, our disfavored
ilos = 28.9+7.5

−6.3 solution would require wind-fed accretion (e.g.,
Ressler et al. 2023) scenarios, where the disk angular momentum
can change on short timescales. In this case, counterclockwise
Q − U loops would be observed sometimes. In an alternative
scenario, flux tubes in a counterclockwise accretion flow may
be bent in the opposite direction, leading to entrapped hot spots
moving clockwise (Antonopoulou et al. 2025). For the accretion
flow model considered in Faggert et al. (2025), see also Özel
et al. (2022) and Younsi et al. (2023), a∗ = 0.8 agrees with the
observed Sgr A∗ image brightness asymmetry for a broad range
of sub-Keplerian velocity profiles for ilos = 18◦, while ilos = 29◦
requires a very slow angular rotation. Generally, hot accretion
flows are expected to be sub-Keplerian due to pressure gradients.

As we find Sgr A∗ unlikely to have a MAD accretion disk
with a powerful outflow, the direction of a potential large-scale jet
would be determined by the interstellar medium and not the black
hole spin direction (e.g., Liska et al. 2018; Kwan et al. 2023;
Ressler et al. 2023). Yet, Wang & Zhang (2024) show that a past
merger with Gaia-Enceladus (Helmi et al. 2018) can reproduce
a high a∗ in Sgr A∗ with a low ilos, where the BH spin axis is
misaligned with the Milky Way’s rotation. Generally, a low ilos
does thus not preclude Sgr A∗ jet activity to be responsible for the
Galactic Fermi/eROSITA bubbles (Sarkar 2024, note in particular
the discussion in Section 4). Recently, Ressler et al. (2023) and
Galishnikova et al. (2025) have shown that the presence of strong

magnetic fields in Sgr A∗ (Event Horizon Telescope Collaboration
et al. 2021a) does not necessarily lead to a MAD state with strong
jets.

The inferred θPA ∼ 106◦ – 137◦ position angle of Sgr A∗’s
spin axis matches with the ∼ 135◦ found by Ball et al. (2021)
and 130◦ ± 20◦ from Yfantis et al. (2024b) from the modeling of
GRAVITY flares. On the other hand, the Gravity Collaboration
et al. (2023) find ∼ 177◦ ± 24◦ from the GRAVITY data, which
is however clearly disfavored by Yfantis et al. (2024b). It is not
yet understood why the modeling of polarimetric ALMA light
curve data yields significantly different PAs in the range of 0◦ to
57◦ (Wielgus et al. 2022b; Yfantis et al. 2024a), but note the 180◦
degeneracy without the astrometry in the ALMA data (Diogo
Ribeiro, priv. comm.). Possibly, ALMA measures an emission
region from an inflow or outflow farther away, where the PA is not
directly related to the black-hole spin axis.2 As noted by Ball et al.,
θPA close to 150◦ are consistent with the angular momentum axis
of a speculative cold disk around Sgr A∗ (Murchikova et al. 2019).
It thus seems more likely that the Doppler-shifted H30α ALMA
measurements are indeed signatures of an accretion flow rather
than a collimated jet as suggested by Royster et al. (2019) and
Yusef-Zadeh et al. (2020). Although, as laid out earlier, a jet in
Sgr A∗ may very well not follow the black hole spin direction on
large scales. Relatedly, we note that Sgr A∗ image asymmetries
determined in current 3 mm VLBI studies are not necessarily
related to a jet direction. As noted by Issaoun et al. (2019), the
intrinsic source structure is highly symmetric when de-scattering
methods are applied and the image major axis direction may also
follow accretion flow emission. Future mm-VLBI upgrades will
likely enable the Sgr A∗ jet detection through direct imaging
(Chavez et al. 2024).

Rhigh ∼ 14 translates into the presence of relatively hot elec-
trons in the Sgr A∗ accretion flow, which is in agreement with past
SED model-fits (Yuan et al. 2002; Mościbrodzka & Falcke 2013).
As noted by Mościbrodzka and Falcke, Rhigh values between 10
and 30 are also predicted by viscous heating processes in shearing
box simulations (Sharma et al. 2007). The MAD models with a
magnetic turbulent cascade heating of electrons considered by
Mościbrodzka (2025) are most similar to Rhigh = 10 images from
the standard models in terms of observational characteristics. The
fact that no direct detection of a jet from Sgr A∗ has been made
yet, fits into the picture of a source model with low Rhigh, small
ilos, and no fully developed MAD accretion flow.

6. Conclusions

We produced a comprehensive GRMHD synthetic data library
based on the 2017 EHT data, reduced using an improved calibra-
tion pipeline. For the first time, we applied a Bayesian artificial
neural network trained on our GRMHD library to EHT visibil-
ity measurements. Combined with the bootstrapping resampling
method, we used our Zingularity networks to perform GRMHD
parameter inference with a robust uncertainty estimation.

Through additional validation tests described here and in
Janssen et al. (2025b), we found that our networks have a per-
sistent performance: The results are not influenced by noisy
data features or the particular choice of (reasonable) network
(hyper-)parameters. The strong intrinsic GRMHD model vari-
ability is also properly taken into account. By construction, our
2 As discussed in Event Horizon Telescope Collaboration et al. (2022d),
the question whether ALMA measurements are impacted by a slowly
varying extended unresolved structure in Sgr A∗ is important for the
reconciliation of the variability discrepancy between GRMHD models
and ALMA light curves.
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results are neither affected by assumptions made in the VLBI
data reduction strategy, nor the external physical influences of
the Sgr A∗ scattering screen and external RM component. We
find our networks to be able to interpolate between the discrete
GRMHD parameters from our training data. It will be worthwhile
to produce new GRMHD runs with these intermediate parameter
values for future in-depth model-data comparisons. Additionally,
the predicted accretion rate, jet power, and broadband spectral
energy distribution can be studied.

For the M87∗ data, we infer MAD models with Rhigh ≥ 160
and a∗ between −0.5 and −0.94. For Sgr A∗, we infer models
that go beyond MAD/SANE with a∗ ∼ 0.8 – 0.9, ilos ∼ 20◦
– 40◦ (corrected for GRMHD symmetry for clockwise rotating
accretion flows), Rhigh ∼ 14, and θPA ∼ 106◦ – 137◦. Our results
are in broad agreement with the literature, but the inferred position
angle of Sgr A∗’s spin axis implies 1.3 mm ALMA measurements
are picking up significant emission from non-horizon scales. As a
next step, we plan to develop interpretable AI methods, building
on the reverse engineering tests conducted in this initial study.
The goal is to unravel which predictions are driven by which
visibility data points.

Finally, we showed how the planned AMT will likely lead
to considerable improvements in parameter estimation accuracy
for tests of models that go beyond GR. For quantities of direct
scientific interest, we can thus predict qualitative improvements
from future EHT array upgrades.

7. Data and code availability

The observational EHT data can be obtained from the
10.25739/kat4-na03 digital object identifier. A single
data_production.sh script in a dedicated repository3

can be used to get a fully automated reduction of the ob-
servational data, producing the calibrated EHT data used
in this work. This calibration is done with the container-
ized version 7.2.2 of the Rpicard pipeline4 (tagged as
646d6a189c01b04cfa10077a46650038d61687d9_
25c42c3c75a8334d1be4f72bc56b4344dc1f068e5).

The synthetic training data are generated with the
Symba pipeline6 (Roelofs et al. 2020). The containerized7

49a813d2dc62eac809f3909bee0d38a8b113ffc4 Symba ver-
sion used in this study is based on Rpicard version 7.2.2 and the
focalpy38.fd529fd version of the MeqSilhouette8 software
(Blecher et al. 2017; Natarajan et al. 2022).

The availability of the synthetic GRMHD training datasets
is described in Janssen et al. (2025a). The availability of the
Zingularity code and configuration files needed to instantiate,
train, and apply the BANNs is given in Janssen et al. (2025b).
Acknowledgements. We thank Jesse Vos for useful discussions about the inter-
pretation of our results. This publication is part of the M2FINDERS project
which has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 Research and Innovation Programme (grant
agreement No 101018682). JD is supported by NASA through the NASA Hub-
ble Fellowship grant HST-HF2-51552.001A, awarded by the Space Telescope
Science Institute, which is operated by the Association of Universities for Re-
search in Astronomy, Incorporated, under NASA contract NAS5-26555. MW
is supported by a Ramón y Cajal grant RYC2023-042988-I from the Spanish
Ministry of Science and Innovation. This material is based upon work supported

3 https://bitbucket.org/M_Janssen/casaeht.
4 https://bitbucket.org/M_Janssen/picard.
5 https://hub.docker.com/r/mjanssen2308/casavlbi_
ehtproduction.
6 https://bitbucket.org/M_Janssen/symba.
7 https://hub.docker.com/r/mjanssen2308/symba.
8 https://github.com/rdeane/MeqSilhouette.

by the National Science Foundation under Award Numbers DBI-0735191, DBI-
1265383, and DBI-1743442. URL: www.cyverse.org. This research was done
using resources provided by the Open Science Grid, which is supported by the
National Science Foundation award #2030508. This research used the Pegasus
Workflow Management Software funded by the National Science Foundation
under grant #1664162. Computations were performed on the HPC system Cobra
at the Max Planck Computing and Data Facility This research made use of the
high-performance computing Raven-GPU cluster of the Max Planck Comput-
ing and Data Facility. Corner plots of posteriors were created with corner.py
(Foreman-Mackey 2016).

References
Antonopoulou, E., Loules, A., & Nathanail, A. 2025, A&A, 696, A10
Antonopoulou, E. & Nathanail, A. 2024, A&A, 690, A240
Backes, M., Müller, C., Conway, J. E., et al. 2016, in The 4th Annual Conference

on High Energy Astrophysics in Southern Africa (HEASA 2016), 29
Ball, D., Özel, F., Christian, P., Chan, C.-K., & Psaltis, D. 2021, ApJ, 917, 8
Berti, E. & Volonteri, M. 2008, ApJ, 684, 822
Blecher, T., Deane, R., Bernardi, G., & Smirnov, O. 2017, MNRAS, 464, 143
Chavez, E., Issaoun, S., Johnson, M. D., et al. 2024, ApJ, 974, 116
Daly, R. A., Donahue, M., O’Dea, C. P., et al. 2024, MNRAS, 527, 428
Doeleman, S., Blackburn, L., Dexter, J., et al. 2019, in Bulletin of the American

Astronomical Society, Vol. 51, 256
Doeleman, S. S., Barrett, J., Blackburn, L., et al. 2023, Galaxies, 11, 107
Eckart, A., Tursunov, A. A., Zajacek, M., et al. 2018, in Accretion Processes in

Cosmic Sources - II, 48
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2024,

ApJ, 964, L26
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2023,

ApJ, 957, L20
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2022a,

ApJ, 930, L12
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2022b,

ApJ, 930, L13
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2022c,

ApJ, 930, L14
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2019a,

ApJ, 875, L1
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2019b,

ApJ, 875, L3
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2019c,

ApJ, 875, L5
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2019d,

ApJ, 875, L6
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2021a,

ApJL, 910, 48
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2022d,

ApJ, 930, L16
Event Horizon Telescope Collaboration, Akiyama, K., Algaba, J. C., et al. 2021b,

ApJ, 910, L13
Faggert, J. C., Özel, F., & Psaltis, D. 2025, ApJ, 981, 209
Foreman-Mackey, D. 2016, The Journal of Open Source Software, 1, 24
Galishnikova, A., Philippov, A., Quataert, E., Chatterjee, K., & Liska, M. 2025,

ApJ, 978, 148
García, A., Galtsov, D., & Kechkin, O. 1995, Phys. Rev. Lett., 74, 1276
Goddi, C., Martí-Vidal, I., Messias, H., & et al. 2021, ApJ, 910, L14
Gold, R., Broderick, A. E., Younsi, Z., et al. 2020, ApJ, 897, 148
Gravity Collaboration, Abuter, R., Aimar, N., et al. 2023, A&A, 677, L10
Gravity Collaboration, Abuter, R., Amorim, A., et al. 2018, A&A, 618, L10
GRAVITY Collaboration, Bauböck, M., Dexter, J., et al. 2020, A&A, 635, A143
He, K., Zhang, X., Ren, S., & Sun, J. 2015, arXiv e-prints, arXiv:1512.03385
Helmi, A., Babusiaux, C., Koppelman, H. H., et al. 2018, Nature, 563, 85
Issaoun, S., Johnson, M. D., Blackburn, L., et al. 2019, ApJ, 871, 30
Janssen, M., Chan, C.-k., Davelaar, J., et al. 2025a, A&A, appected (Paper I)
Janssen, M., Chan, C.-k., Davelaar, J., et al. 2025b, A&A, appected (Paper II)
Janssen, M., Goddi, C., Falcke, H., et al. 2018, in 14th European VLBI Network

Symposium & Users Meeting (EVN 2018), 80
Janssen, M., Goddi, C., van Bemmel, I. M., et al. 2019, A&A, 626, A75
Janssen, M., Radcliffe, J. F., & Wagner, J. 2022, Universe, 8, 527
Joshi, A. V., Prather, B. S., Chan, C.-k., Wielgus, M., & Gammie, C. F. 2024, ApJ,

972, 135
Kerr, R. P. 1963, Phys. Rev. Lett., 11, 237
Kwan, T. M., Dai, L., & Tchekhovskoy, A. 2023, ApJ, 946, L42
La Bella, N., Issaoun, S., Roelofs, F., Fromm, C., & Falcke, H. 2023, A&A, 672,

A16
Levis, A., Chael, A. A., Bouman, K. L., Wielgus, M., & Srinivasan, P. P. 2024,

Nature Astronomy, 8, 765

Article number, page 8 of 9

https://doi.org/10.25739/kat4-na03
https://hub.docker.com/layers/mjanssen2308/casavlbi_ehtproduction/646d6a189c01b04cfa10077a46650038d61687d9_377f3692631b8037f1ffc2bb3d1f9620bc209ca2/images/sha256-f8d8db50851fc37dc6c8b1c8a326120453147b085ed97b77bd68795374ce0b9c?context=explore
https://hub.docker.com/layers/mjanssen2308/casavlbi_ehtproduction/646d6a189c01b04cfa10077a46650038d61687d9_377f3692631b8037f1ffc2bb3d1f9620bc209ca2/images/sha256-f8d8db50851fc37dc6c8b1c8a326120453147b085ed97b77bd68795374ce0b9c?context=explore
https://hub.docker.com/layers/mjanssen2308/symba/49a813d2dc62eac809f3909bee0d38a8b113ffc4/images/sha256-4a31d46480ffa1b6abfb55fd52fd829274aece3b4f12c5e563b31a810eb9c373?context=explore
https://bitbucket.org/M_Janssen/casaeht
https://bitbucket.org/M_Janssen/picard
https://hub.docker.com/r/mjanssen2308/casavlbi_ehtproduction
https://hub.docker.com/r/mjanssen2308/casavlbi_ehtproduction
https://bitbucket.org/M_Janssen/symba
https://hub.docker.com/r/mjanssen2308/symba
https://github.com/rdeane/MeqSilhouette
www.cyverse.org


M. Janssen et al.: Deep learning inference with the Event Horizon Telescope

Lin, X., Li, Y.-P., & Yuan, F. 2023, MNRAS, 520, 1271
Liska, M., Hesp, C., Tchekhovskoy, A., et al. 2018, MNRAS, 474, L81
Lowell, B., Jacquemin-Ide, J., Tchekhovskoy, A., & Duncan, A. 2024, ApJ, 960,

82
Matsumoto, T., Chan, C.-H., & Piran, T. 2020, MNRAS, 497, 2385
Mizuno, Y., Younsi, Z., Fromm, C. M., et al. 2018, Nature Astronomy, 2, 585
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