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ABSTRACT

Context. In this second paper in our publication series, we present the open-source Zingularity framework for parameter inference
with deep Bayesian artificial neural networks. We carried out out supervised learning with synthetic millimeter very long baseline
interferometry observations of the Event Horizon Telescope (EHT). Our ground-truth models are based on general relativistic
magnetohydrodynamic simulations of Sgr A∗ and M87∗ on horizon scales. The models predict the synchrotron emission produced by
these accreting supermassive black hole systems.
Aims. We investigated how well Zingularity neural networks are able to infer key model parameters from EHT observations, such as
the black hole spin and the magnetic state of the accretion disk, when uncertainties in the data are accurately taken into account.
Methods. Zingularitymakes use of the TensorFlow Probability library and is able to handle large amounts of data with a combination
of the efficient TFRecord data format plus the Horovod framework for distributed deep learning. Our approach is the first analysis of
EHT data with Bayesian neural networks, where an unprecedented training data size, under consideration of a closely modeled EHT
signal path, and the full information content of the observational data are used. Zingularity infers parameters based on salient features
in the data and is containerized for scientific reproducibility.
Results. Through parameter surveys and dedicated validation tests, we identified neural network architectures, that are robust against
internal stochastic processes and unaffected by noise in the observational and model data. We give examples of how different data
properties affect the network training. We show how the Bayesian nature of our networks gives trustworthy uncertainties and uncovers
failure modes for uncharacterizable data.
Conclusions. It is easy to achieve low validation errors during training on synthetic data with neural networks, particularly when the
forward modeling is too simplified. Through careful studies, we demonstrate that our trained networks can generalize well so that
reliable results can be obtained from observational data.

Key words. methods: data analysis – techniques: high angular resolution – techniques: interferometric

1. Introduction

Low-powered active galactic nuclei (AGNs) are well described by
numerical general relativistic magnetohydrodynamics (GRMHD)
simulations (e.g., De Villiers & Hawley 2003; McKinney 2006;
Dibi et al. 2012; Ryan et al. 2018). GRMHD simulations solve the
equations of a magnetohydrodynamic fluid in curved spacetime.
An initial setup with a weakly magnetized torus self-consistently
evolves into radiatively inefficient accretion flows accompanied
by outflows and jets.

In this work, we focus on the low-luminosity AGNs Sagit-
tarius A* (Sgr A*) and Messier 87* (M87∗). M87∗ is a nearby
elliptical galaxy in the Virgo cluster and features a prominent ex-
tragalactic radio jet that has been resolved by observations in the
radio to X-ray bands (e.g., Curtis 1918; Byram et al. 1966; Owen
et al. 1989; Sparks et al. 1996; Biretta et al. 1999; Marshall et al.
2002; Hada et al. 2011; Mertens et al. 2016; Walker et al. 2018).

Sgr A∗ is known as the “starving” supermassive black hole in our
Galactic Center with a very low accretion rate and no visible jet
emission, discovered as a bright radio source (Balick & Brown
1974). Detections of a gravitational redshift (GRAVITY Collabo-
ration et al. 2018; Do et al. 2019) and Schwarzschild precession
(GRAVITY Collaboration et al. 2020; Gravity Collaboration et al.
2022) of a star in orbit around the black hole served as important
tests of General Relativity and for over two decades Sgr A∗’s
rich multiwavelength variability has been studied. Here, we refer
to the detailed recent studies by Witzel et al. (2021) and Event
Horizon Telescope Collaboration et al. (2022a) and references
therein.

Electromagnetic observables computed from GRMHD mod-
els through general relativistic ray-tracing (GRRT) are overall in
good agreement with high-resolution radio observations of Sgr A*
and M87∗. Selections of a “standard” set of GRMHD-GRRT mod-
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els (Event Horizon Telescope Collaboration et al. (2019d, 2022e);
see also the overview of the model space given in Janssen et al.
(2025a)) have been scored against high-resolution millimeter-
wave observations of Sgr A* and M87∗ with the Event Horizon
Telescope (EHT) very long baseline interferometry (VLBI) array
in various ways.

In Event Horizon Telescope Collaboration et al. (2019d), a
χ2 scoring of 100-500 snapshots per M87∗ model against the
EHT total intensity data of M87∗ with the Themis (Broderick
et al. 2020) and Gena (Fromm et al. 2019) software packages
disfavored magnetically arrested disk (MAD) accretion models,
which have strong and organized magnetic fields that can disrupt
the accretion flow (e.g., McKinney et al. 2012; Narayan et al.
2012) and highly negative black hole spins (measured with respect
to the accretion flow). For this average image scoring analysis,
closure phases (Jennison 1958) and total intensity amplitudes
were used. The measurements were averaged over minute-long
VLBI scan, which can lead to decoherence on low signal-to-noise
ratio (S/N) data, where atmospheric phase turbulence cannot be
calibrated reliably.

In Event Horizon Telescope Collaboration et al. (2021c), the
image-integrated linear and circular polarization, average linear
polarization, and a parameter describing the azimuthal electric-
vector position angle pattern (Palumbo et al. 2020; Palumbo &
Wong 2022; Emami et al. 2023b) derived from the M87∗ linear
polarization maps at 230 GHz (Event Horizon Telescope Collabo-
ration et al. 2021a; Goddi et al. 2021) have been compared against
a 200 GRRT image frames subset blurred with a 20 µas beam for
each model. Overall, MAD models are in better agreement than
standard and normal evolution (SANE) models, where the mag-
netic fields are weaker and more turbulent. The MAD preference
is reinforced when the measured upper limits on resolved circular
polarization are taken into account (Event Horizon Telescope
Collaboration et al. 2023).

In Event Horizon Telescope Collaboration et al. (2022e), parts
of the EHT Sgr A∗ data were used for source-structural con-
straints based on the image size, salient features in the measured
flux densities, and geometric ring-model fits (Event Horizon Tele-
scope Collaboration et al. 2022c), making use of the new Com-
rade software (Tiede 2022), among others. Models with negative
spin, edge-on inclination angles, and equal ion and electron tem-
peratures are disfavored.

The 2017 EHT Sgr A∗ polarization data were analyzed
in Event Horizon Telescope Collaboration et al. (2024). The
KerrBAM semianalytic model (Palumbo et al. 2022) was used
for a qualitative exploration of the relations between polarization
measurements and physical quantities of Sgr A∗. The GRMHD
scoring leaves a single passing MAD model at an inclination of
150◦ with a spin of 0.94 and comparatively strong jet emission,
assuming that the observed rotation measure is produced by an
external Faraday screen.

Multiwavelength observations of M87∗ (EHT MWL Science
Working Group et al. 2021) rule out spin-zero models (based
on jet power) and SANE models, where very hot electrons in
the accretion disk produce an X-ray luminosity excess (Event
Horizon Telescope Collaboration et al. 2019d). Sgr A* multi-
wavelength data (Event Horizon Telescope Collaboration et al.
2022a) favors MAD models and rejects most models with large
inclination angles and all models with an equal ion and elec-
tron temperature. The majority of the models are more variable
than the observed intra-day total-flux light-curve flux variations
(Wielgus et al. 2022), while SANE models are overall less vari-
able than MADs (see the discussion in Event Horizon Telescope
Collaboration et al. 2022e).

Using one specific image feature, the size of the black hole
shadow (Falcke et al. 2000) calibrated with GRMHD-GRRT mod-
els, Psaltis et al. (2020), Kocherlakota et al. (2021), and Event
Horizon Telescope Collaboration et al. (2022d) performed tests
of spacetime metrics. The degree to which the shadow can be
used for a clean test of gravity through a robust relation to the
photon ring (e.g., Bardeen 1973; Johnson et al. 2020) is being
debated and depends on how well we understand low-powered
AGN accretion physics (Narayan et al. 2019; Gralla 2021; Chael
et al. 2021; Bronzwaer & Falcke 2021; Özel et al. 2022; Wielgus
2021; Vincent et al. 2022; Paugnat et al. 2022).

Recently, further EHT data analysis methods have been pro-
posed. Medeiros et al. (2023a,b) used dictionary learning of a
GRMHD-GRRT simulations to reconstruct images from EHT
data through a principal components analysis. Emami et al.
(2023a) have shown that E and B linear polarization modes are
informative regarding GRMHD-GRRT parameters. Conroy et al.
(2023) have devised a method to measure rotation speeds in future
EHT movie reconstructions using autocorrelations in the image
domain. Chael et al. (2023) have identified a relation between
horizon-scale polarimetric observables and electromagnetic en-
ergy extraction from the black hole spin. Yfantis et al. (2024) have
developed a Bayesian ray-tracing parameter estimation frame-
work, related to earlier work by Kim et al. (2016) and Psaltis
et al. (2022). New methods for directly reconstructing the source
structure for analyses in the image domain have been presented
in Müller & Lobanov (2022), Müller et al. (2023), Mus et al.
(2024a), Mus et al. (2024b), and Mus & Martí-Vidal (2024).

In this work we present Zingularity,1 an open-source generic
TensorFlow-based (Abadi et al. 2016a,b) framework of Bayesian
deep neural networks for astronomical interferometers, which
we developed to use the full information content of data from
EHT observations for a GRMHD-GRRT data-driven parameter
inference without the need to compromise on the number of
model images due to computational limitations. This is realized
by using large-scale synthetic data libraries that are based on
a wide range of Sgr A* and M87∗ simulations (Janssen et al.
2025a). Here we describe and validate the Zingularity network
training for the 2017 EHT observations. Janssen et al. (2025b)
shows the parameter inference results from the application of the
trained network to observational data alongside predictions of
future upgraded EHT observations using models that go beyond
the Kerr (1963) metric.

Driven by the vastly increasing data sizes, machine learning
methods are becoming increasingly popular in astronomy, mostly
in the area of source finding as well as classification (see for
example VanderPlas et al. 2012; Baron 2019; Fluke & Jacobs
2020; Kong et al. 2020; Smith & Geach 2023; Djorgovski et al.
2022; Huertas-Company & Lanusse 2023; Moriwaki et al. 2023)
and with convolutional neural networks (e.g., LeCun et al. 2015)
in particular. Related to our work, Shatskiy & Evgeniev (2019),
van der Gucht et al. (2020), Yao-Yu Lin et al. (2020), and Popov
et al. (2021) have used neural networks in the EHT total intensity
image domain, where the uncertainties and model degeneracies
are large for the current EHT (u, v) coverage. Qiu et al. (2023)
have trained a random forest machine learning model on a few
salient features in the image domain from GRMHD-GRRT sim-
ulations, including polarization information. Levis et al. (2024)
used neural networks to study the orbital dynamics around Sgr A*
in the millimeter wavelength polarimetric observations. Com-
pared to Yao-Yu Lin et al. (2021), where total intensity visibility
measurements from M87∗ were used for the network training,

1 https://gitlab.com/mjanssen2308/zingularity
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we used a larger training dataset for M87∗, also considered the
Sgr A* data, included more effects for the modeling of the EHT
signal path, took the additional polarization information from the
measurements into account, and obtained uncertainties on the in-
ferred parameters by using a Bayesian network and bootstrapping
of observational data errors.

In terms of more general machine learning applications for
astronomical interferometers, Sun et al. (2020) have developed a
method for optimizing the telescope locations for VLBI arrays,
Sun & Bouman (2020) present a variational deep probabilistic
imaging approach, quantifying reconstruction uncertainty, and
Sun et al. (2022) use an improved variational inference method
to obtain accurate posterior samples for parameter inference
tasks. Neural-network-based interferometric imaging methods
have been developed by Morningstar et al. (2018, 2019), Gheller
& Vazza (2022), Schmidt et al. (2022), Aghabiglou et al. (2024),
Thyagarajan et al. (2024), Feng et al. (2024), and Lai et al. (2025).
Mohan et al. (2024) and SaraerToosi & Broderick (2024) use
neural networks to generate M87∗ images. Finally, Duarte et al.
(2022) have used a deep convolutional neural network as a fast
generator of GRMHD simulations, a method that might substan-
tially speed up the generation of synthetic training data in the
future.

In Section 2 of this work we introduce machine learning
and astrophysical interferometry concepts used throughout this
paper. In Section 3, we give our motivation for developing
Zingularity (i.e., the usefulness of ML applications for the anal-
ysis of data from astronomical interferometers like the EHT).
In Section 4, we introduce the GRMHD-GRRT synthetic data
library of Sgr A∗ and M87∗ EHT observations used as a training
dataset for Zingularity in this work. In Section 5, we describe
the Zingularity framework together with the specific algorithms
used to fit models to EHT data in this paper. In Section 6, we show
the suite of validation tests and diagnostics implemented to verify
the output of Zingularity, particularly under the aspect of how
Zingularity performs Bayesian model parameter inference from
uncharacterized data and how much this inference is hindered by
instrumental effects. We offer our conclusions about Zingularity
and the ability to extract GRMHD-GRRT parameters from cur-
rent EHT observations in Section 7. We finish with an outlook of
planned future studies with Zingularity in Section 8.

2. Machine learning and interferometry concepts

Machine learning (ML) methods automatically learn the charac-
teristics of a training dataset T̃ . In this work, supervised learning
is carried out, where labeled training data are used. As such, the
ML algorithm optimizes itself based on a known input-output
mapping. We are using a fraction of the data contained in T̃ as val-
idation data, which is used to compute the accuracy of the trained
ML model based on data that was not used for the optimization.

Artificial neural networks (ANNs) are ML algorithms that
are designed based on neural connections of biological brains.
Information in the form of floating point numbers are passed from
an input dataset, through connected computing nodes (‘neurons’)
that each transform the data with some function g, up to a final
layer, that yields the predictions of the ANN. A network organized
in layers, for which the same type of operation g(x) is computed
for each neuron and the input x is taken as the output of the
previous layer in the case of feedforward networks (Appendix A).
Every network has one input and one output layer. ANNs with
more than three layers are referred to as deep neural networks.

Free parameters of each neuron’s g are optimized (‘trained’)
based on a loss function between the network’s input and output.

We refer to all data imperfections (i.e., all differences in the
data measured between a realistic instrument and a hypothetical
perfect measurement device) as data corruption effects along the
signal path C̃. These effects encompass thermal noise and un-
corrected systematics from the instrument itself, corruptions that
occur along the long signal path of astronomical observatories
(e.g., interstellar scattering and the added noise and absorption
from Earth’s atmosphere for ground-based observatories) as well
as uncorrected systematics introduced by assumptions made dur-
ing the data reduction process.

We denote uncharacterized data, for which we do not know
the underlying physical reality as Ũ. Typically, Ũ is obtained
from a measurement and affected by C̃. We assume Ũ to be rea-
sonably well described by a model M̃ and wish to infer the model
parameters from the data. For our EHT horizon-scale observa-
tions of Sgr A∗ and M87∗, we use GRMHD-GRRT images as
M̃.

With synthetic data S̃ , we attempt to create mock observations
that sample the data produced by an astronomical observatory as
closely as possible. This requires a full forward modeling, where
the physical reality is well described by M̃ and all relevant data
corruption effects along the signal paths are modeled correctly.
We used synthetic data based on GRMHD-GRRT images for our
training input of our ANN as described in Janssen et al. (2025a):
T̃ = S̃ (M̃, C̃). It is therefore required that the most significant fea-
tures of S̃ , that have discriminative power for M̃ in the presence
of C̃, to also be present in Ũ. GRRT images are currently our best
models for the interpretation of EHT observations (Event Hori-
zon Telescope Collaboration et al. 2019d, 2021b). We note that
that restriction to GRMHD-GRRT makes our analyses model-
dependent and that the validity of these models is also being
questioned in the literature (e.g., Gralla 2021). While we make
use of a large parameter space of the used models, all simulations
assume ideal MHD and a simple description of the electron tem-
perature as described in the previous paper in this series. Further
limitations of the models used in this initial study are described
in the outlook section 8.

Most astronomical instruments measure the electric field emit-
ted by a radiating source with sky brightness distribution I. In-
terferometers cross-correlate the signals measured by pairs of
telescopes to create visibilitiesV. A Fourier relationship links I
and uncorruptedV (van Cittert 1934; Zernike 1938). However,
interferometers provide only an incomplete sampling ofV corre-
sponding to projected vectors connecting all pairs of telescopes
(baselines). Hence, obtaining I from V becomes an ill-posed
problem and additional information or assumptions must be used
(Thompson et al. 2017). Furthermore, C̃ must be modeled to
correct theV measurements (Hamaker et al. 1996). Visibilities
are measured as a function of time t, frequency ν, telescope base-
line vector (u, v,w), and polarization P. Each telescope in the
interferometer typically measures two orthogonal polarization
states of the radiation (right/left-handed circular polarization or
horizontal/vertical linear polarization). Four polarization products
P are formed from the two telescopes that form a baseline and
the two orthogonal polarization measurements. The four Stokes
parameters (Stokes 1851) can be formed from different linear
combinations of the four P values.

ML methods build a complex model that tries to capture the
most important features of M̃ through a training dataset T̃ , such
that parameters of M̃ can be retrieved from Ũ indirectly. We
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Table 1. Shorthand for terminology used in this work.

Symbol Description
Ũ Uncharacterized data; here the observational data
C̃ Data corruption effects along the signal path
M̃ Model data
S̃ Synthetic data
T̃ Training data; here T̃ = S̃ (M̃, C̃)

will be referring to methods that are fitting M̃ directly to Ũ as
conventional. For conventional interferometer methods, M̃ are
typically simple geometric models or pixel-based images I. The
direct fitting of complex models such as GRRT images poses a
significant computational challenge. We summarize our shorthand
for the machine learning concepts in Table 1.

3. Motivation

In this section, we summarize the motivation for developing
Zingularity, which are the use-cases and unique opportunities
when employing ML for data from astronomical interferometers
and the EHT in particular.

Firstly, the TensorFlow library makes efficient use of the
modern TFRecord2 data format and scales well with CPU, GPU,
and TPU3 computing power. This allows Zingularity to be
trained on large T̃ that span a wide range of M̃ and C̃ parameters.
For the EHT, Zingularity can make inferences based on the full
GRMHD-GRRT parameter space, which is not computationally
feasible with conventional methods. Furthermore, Zingularity
is able to process visibilities to their full extend, without losses
that can occur when data are being averaged. Once the network is
trained, the application to Ũ for inference is practically instanta-
neous. Efficient and scalable analysis software will be needed for
the increasing data rates of future instruments. In particular, the
EHT plus next-generation EHT (Blackburn et al. 2019; Johnson
et al. 2023; Doeleman et al. 2023) will observe with an increased
bandwidth as well as more telescopes in the future (The Event
Horizon Telescope Collaboration 2024) and exascale computing
will be needed to handle the data produced by the Square Kilome-
tre Array (Dewdney et al. 2009) and next-generation Very Large
Array (McKinnon et al. 2019). It has already been demonstrated
that such big computing tasks are achievable with TensorFlow
(Kurth et al. 2018). More details about the computational speed
of Zingularity are given in Section 5.4.

Secondly, supervised ML is designed to obtain results with
well defined fidelity metrics that describe how accurately model
parameters can be recovered in a traceable manner (Section 5.1.5).

Thirdly, ANNs are training on salient and robust features by
design. As such, data points that are strongly affected by C̃ or
that are not being distinctive for the underlying M̃ parameters
of interest are not taken into account. In simple χ2 analyses for
the goodness of fit, these data points can lead to poor results.
Closure phases (Jennison 1958), log closure amplitudes (Black-
burn et al. 2020), and closure traces (Broderick & Pesce 2020) are
known robust observables that can be formed from visibilities, but
whose errors are no longer Gaussian in the low S/N regime and

2 https://www.tensorflow.org/tutorials/load_data/
tfrecord.
3 https://cloud.google.com/tpu/docs/tpus

whose variance does depend on telescope gain errors (Lockhart &
Gralla 2022). GRMHD scoring employed in past EHT analyses
is dependent on how the method is implemented as well as how
observational and model uncertainties are treated. Deep ANNs
may uncover more complex robust data combinations, which are
discriminative for the M̃ parameter space. Especially for com-
plex models, such as GRRT images, the parameter-to-feature
correspondence is not fully known a priori.

Fourthly, by using large T̃ consisting of realistic synthetic
data, all forward-modeled data corruption effects are taken into ac-
count by ML methods. For sparse interferometric measurements,
data corruptions (e.g., antenna gain errors, instrumental polariza-
tion leakage, and atmospheric effects for high frequency obser-
vations, Janssen et al. 2025a) can have a substantial influence
on the obtained results. The modeling of these (time-variable)
effects is a) convoluted with the reconstructions of (time-variable)
source structures during self-calibration (Readhead & Wilkinson
1978; Pearson & Readhead 1984), b) limited by the S/N of the
observational data (e.g., Janssen et al. 2022), c) often based on
simplifying assumptions (Event Horizon Telescope Collabora-
tion et al. 2019b), and d) introduces additional noise from the
precision of determined calibration solutions (e.g., fringe-fitting
phase, delay, and rate estimates; Thompson et al. 2017). Some al-
gorithms can marginalize over a range of some C̃ (e.g., Broderick
et al. 2020; Pesce 2021), which requires considerable compu-
tational resources. Moreover, a realistic modeling of the data
acquisition and processing of Ũ for the generation of S̃ ensures
that the results are not affected by unknown systematics intro-
duced by a specific data reduction procedure. VLBI-specific data
processing methods are often complex and the consequences of
some calibration assumptions are not always fully explored and
understood. One example is the usage of a point source during the
fringe-fititng stage (Natarajan et al. 2020). In analyses published
by the EHT collaboration, a small percentage of systematic noise
is added to deal with unknown data imperfections (Event Horizon
Telescope Collaboration et al. 2019b, 2022a). Here, we assert this
to be covered by our forward modeling plus error bootstrapping.
The flat addition of a single systematic noise budget to all base-
lines can lead to source signals being washed out on baselines
that measure high correlated flux densities.

Fifthly, ML can easily be used to study the predictive power
of M̃ separately from C̃, if the signal path and instrument can
be modeled accurately. Synthetic training data can be flexibly
generated with different combinations of C̃ and the corresponding
accuracy of M̃ parameter predictions can be studied. The predic-
tive power of M̃ alone can be studied in the limit of a perfect
hypothetical instrument, where no C̃ is added to the synthetic
data. Roelofs et al. (2020) performed a simple image-based fi-
delity study of how well an upgraded EHT would be able to
detect the M87 jet for example. Another example, where the
model predictions are straightforward, are self-similar photon-
subrings surrounding the shadow of a black hole. These rings
can be studied to test GR and to accurately measure black hole
parameters (Johnson et al. 2020). It is expected for the photon-
ring signals to dominate at long interferometric baselines. With
ML, one could for instance study the accuracy of a space-VLBI
GR test, marginalized over a range of possible accretion environ-
ments around the black hole, as a function of maximally achieved
baseline length and calibration uncertainty.

Sixthly, Zingularity makes use of the full information con-
tent of T̃ and Ũ. Conventional mm VLBI methods on the other
hand often analyze the visibilities in stages: Using only the total
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Table 2. Zingularity training and application parameters. For Sgr A∗, we found two equally viable models with different Nep.

Category Param. Value Description
Common f Swish (Ramachandran et al. 2017) Activation function for all hidden layers
Zingularity Ξ RMSProp Optimization algorithm
GRMHD L Negative log-likelihood Loss function
-GRRT EHT ηval 0.1 Fraction of T̃ used for validation
parameters Nb 256 Training batch size

lr 0.001 × n/Nep Learning rate warm-up for 0 ≤ n ≤ 0.1 × Nep
0.0001 × (1 + cos(nπ/Nep))/2 Learning rate cosine decay for 0.1 × Nep ≤ n ≤ Nep
M87∗ Sgr A∗

Fiducial Nvis 8 × 5489 8 × 13840 Number of data points in a training sample
models Ntr 600,000 252,000 Number of training samples

Nep 70 50, 60 Number of training epochs
ηdrop 0.01 0 Dropout rate for stochastic neuron deactivation
L1 0.01 0.01 L1 (lasso) regularization hyperparameter
L2 0.01 0.01 L2 (ridge) regularization hyperparameter

kconv 8 8 Receptive field of CNN layers
nCNNb 16 8 Baseline number of neurons for the ResNet CNN layers
nCNNl 128 2048 Neurons in last ResNet CNN layer
Ndense 15 12 Number of post-ResNet dense variational layers
ndense 128 1024 Neurons in post-ResNet dense variational layers
Nfree 1,376,806 135,068,877 Number of free parameters in the network

Boot- D 1 – 3 % (EHT et al. 2021a) Polarization leakage (D-terms)
strapping Gplanet 10 % (Janssen et al. 2019a) Primary calibrator model uncertainties
errors for Gscatter 5 – 35 % (Janssen et al. 2019a) DPFU uncertainty due to measurement scatter
the EHT gcB 3.6 – 10.4 % (Janssen et al. 2019a) Measurement error on gain curve curvature

gcE0 1 – 2 % (Janssen et al. 2019a) Measurement error on gain curve peak elevation
σth ∼ 8.5 × 10−6 √SEFD1SEFD2 Thermal noise of EHT data used in this work

intensity (Stokes I) information first, followed by linear polar-
ization (Stokes Q andU) in some cases. The usually negligible
circular polarization (StokesV) signals from the source and tem-
poral evolution of I are also often modeled separately, if at all.

Finally, while previous ANN-based parameter estimation stud-
ies for the EHT were based on Stokes I images (van der Gucht
et al. 2020; Yao-Yu Lin et al. 2020), Zingularity works with the
visibilities directly and makes use of the full polarization infor-
mation. The advantages of using the visibilities directly are that
the intermediate modeling step necessary to obtain I is removed
and that there is a precise description ofV uncertainties. Addi-
tionally, there are no constraints for image-specific parameters.
Thus, different models, for example with different fields of view
and pixel sizes, can be used together.

Before proceeding, the limitations of our current ML ap-
proach should be discussed as well. Like in the EHT GRMHD
scoring, results have to be interpreted within the M̃ parameter
space. Further, with our current BANN implementations, we are
tied to specific (u, v) coverages from specific observations. Here,
it is important to note that a proper forward modeling for un-
biased inference requires the T̃ generation to be tailored to the
characteristics of specific observations anyway. We thus argue
that computational efficiency could be gained by speeding up our
S̃ generation methods, rather than attempting to devise a flexible
BANN that can be applied to observations it was not trained on.

4. Training data

In this work, we used the EHT synthetic data library S̃ that is
based on the standard GRMHD-GRRT Sgr A∗ and M87∗ models

M̃ from Janssen et al. (2025a) as training data T̃ for Zingularity.
A direct comparison of the models with EHT image reconstruc-
tions is not possible, because the observational images have a
limited resolution and are not unique (Event Horizon Telescope
Collaboration et al. 2019c, 2022b).

S̃ was created with Symba (Roelofs et al. 2020) to model
the complete signal path of observational VLBI data and
stored as TFRecord files. The M̃ parameters of interest are the
MAD/SANE magnetic state of the accretion disk ϕmag, the black
hole spin a∗, the proportionality between the ion- to electron
temperature Rhigh in the accretion disk, and for Sgr A∗, also the
inclination angle ilos and position angle θPA of the source. For
M87∗, we fixed ilos = 17◦ (Mertens et al. 2016) and θPA = 288◦
(Walker et al. 2018). We set black hole masses of 4.14 × 106 M⊙
and 6.2 × 109 M⊙ and distances of 8.127 × 103 parsec (pc) and
16.9×106 pc for Sgr A∗, respectively M87∗ (Gebhardt et al. 2011;
Gravity Collaboration et al. 2019; Do et al. 2019). Random vari-
ations at the 10 % level were added to the mass over distance
ratios in the synthetic data generation as described in Section 3.6
of Janssen et al. (2025a). For each M̃, we have about 1000 im-
ages. For M87∗, we have multiple S̃ realizations for each single
image. For Sgr A∗, we have multiple realizations from groups
of 432 images, capturing the variability of the source during an
observation.

For each realization, data corruption effects C̃ due to thermal
noise, uncertain telescope gains and polarization leakages, Earth’s
atmosphere, as well as the interstellar scattering screen toward
Sgr A∗ were varied. Given a set bandwidth, integration time, and
quantization efficiency of the recorded data, the thermal noise was
determined by the System Equivalent Flux Densities (SEFDs)
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Fig. 1. Four training dataset examples. The top row shows the total intensity ray-traced ground-truth model images on logarithmic scales with
varying dynamic ranges. Normalized full-pol visibility amplitudes and phases of corresponding synthetic data realizations are displayed with
thermal noise error bars as a function of baseline length in units of the observing wavelength λ ≈ 1.3 mm (see Janssen et al. (2025a) for the (u, v)
coverage) in the middle and bottom rows, respectively. The measurements shown can come from different orientations at the same baseline length.
For a better readability, the visibilities have been averaged over scan durations, normalized amplitudes lower than 0.001 have been clipped, and the
values of the different Stokes parameters are each offset by 50 Mλ on the x-axis. In the top left corner of each model image is indicated whether the
model and data correspond to M87∗ or Sgr A∗ and the GRRT frame number of the image. The strongly time-variable Sgr A∗ data were generated
from multiple GRRT frames, of which a single frame is displayed here. Spin a∗ = s, Rhigh = r, and ilos = l parameters are listed in a shorthand
notation as as, Rr, and il in the top right corner of each model image. The Sgr A∗ models are shown here with θPA = 0.

of two antennas forming a baseline. The SEFD is the sum of
all noise contributions along the signal path. Telescope gains
are errors in the measured amplitude and phase of the signal.
Polarization leakage is the cross-talk between the two orthogonal
telescope receivers, which measure different polarization states
of the incoming radiation. The Earth’s atmosphere causes an
attenuation of the signal, additional noise, and phase errors. The
Sgr A∗ scattering screen leads to a blurred source image with
additional induced substructures. These corruption effects are
described in detail in Section 4 of Janssen et al. (2025a).

As noted in Section 1, some regions of the GRMHD-GRRT
parameter space are disfavored based on simple comparisons
with the EHT data and multiwavelength constraints. Nonetheless,
we did not apply any a priori cuts on T̃ and trained on data that
covers the full M̃ parameter space. On the one hand, this serves as
a validation for Zingularity, as the posterior probability from the
fit should be disjoint from the the parameter space that is strongly
disfavored by EHT constraints applied in earlier works. On the

other hand, our strategy serves as a test of the models. If GRMHD-
GRRT describes the physical reality of Sgr A∗ and M87∗ well, the
models favored by Zingularity fits should be in agreement with
(quasi-)simultaneous multiwavelength constraints in the absence
of parameter degeneracies.

Table 2 gives an overview of the training data and neural
network parameters used in this work. We have Ntr individual
T̃ samples. Each consists of Nvis real and imaginary values of
the complex correlation coefficients per RR, RL, LR, and LL
correlation product. The (u, v) coverage corresponds to the 2017
EHT observations on April 7 for Sgr A∗ and April 11 for M87∗
(Event Horizon Telescope Collaboration et al. 2019a; Janssen et al.
2025a). The time cadence of the data within VLBI scans is kept to
a short 10 s sampling, to avoid decoherence effects from residual
phase errors. Using the correlation outputs directly without long
averaging intervals keeps the systematic error budgets low; the
determined total intensity error budget can be erroneous in the
presence of circularly polarized source signals and long averaging
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Fig. 2. Flowchart of the Zingularity data streams. The left column shows the pathway from the input theory models M̃ to the training data T̃ . The
right column shows the processing chain for the observational EHT data Ũ. The central column presents the common metadata used.

times likely cause decoherence in mm VLBI observations. For
the current EHT data of Sgr A∗ in particular, both effects need to
be taken into account (Event Horizon Telescope Collaboration
et al. 2022a). But also for the M87∗ EHT data, coherence losses
will occur when averaging the data in time (Figure 18 in Event
Horizon Telescope Collaboration et al. 2019b).

Figure 1 shows a few T̃ examples alongside the underlying
ground-truth M̃. Unlike the native visibilities used as neural net-
work input, the data shown here are in a physically meaningful
Stokes I (total intensity), Q&U (linear polarization),V (circular
polarization) amplitude and phase representation averaged over
VLBI scan durations of a few-minutes. The Sgr A∗ data have a
better (u, v) coverage and exhibit intrinsic variability – while a sin-
gle static frame made up an M87∗ dataset, multiple frames were
used akin to a movie for Sgr A∗, as the hours-long EHT observing
track is much longer than the ∼ 20 s gravitational timescale of the
source.

The two M87∗ models displayed differ in the black hole spin
parameter a∗. The model with the highly spinning a∗ = 0.94
black hole possesses more extended emission. With relatively low
Rhigh = 10 values, the ratio of jet to disk emission is comparatively
small. Between about 3.5 Gλ and 4.5 Gλ, a clusters of Stokes I
visibility phases are offset by roughly 180◦ between the two
models. Concurrently, slight offsets and a steeper phase evolution
with baseline length for the a∗ = 0.5 model data are present
for the Q and U phases. The collective differences in phases
across multiple Stokes parameters can be possible salient model
features that allow for a distinction of the spin parameter in this
case study. Other differences in the visibility data could be the
result of different C̃ realizations. For example, telescope gain
errors could cause the differences of Stokes I amplitudes, while
polarization leakage could be responsible for the Q andU phase
differences at other baseline locations, where Stokes I shows no
significant changes.

Out of the few Sgr A∗ M̃ that pass most of the multiwave-
length and EHT data constraints considered in Event Horizon

Telescope Collaboration et al. (2022e), we selected two exam-
ples for Figure 1. The SANE a∗ = 0.5, Rhigh = 40, ilos = 10◦
model fails only the 86 GHz source size. The MAD a∗ = 0.94,
Rhigh = 160, ilos = 30◦ model fails only the variability constraints
(Wielgus et al. 2022; Broderick et al. 2022).

For the Sgr A∗ data, it is more difficult to identify salient
features by eye due to the intrinsic M̃ variability. A possibly
important feature is the higher polarization of the MAD model;
across all baseline lengths, the Q and U amplitudes are higher
and phases more coherent. As noted in Event Horizon Telescope
Collaboration et al. (2022e), the Sgr A∗ SANE model shown here
is indeed most likely weakly polarized. However, the polarization
can differ between model frames and be affected by polarization
leakage, which makes the need for a deep BANN, trained on
many M̃ and C̃ realizations to identify the robust salient features,
evident.

5. Zingularity

Zingularity4 is a modular open-source framework for the imple-
mentation of Bayesian TensorFlow-based neural networks. The
input data for T̃ and Ũ is converted into the optimized and effi-
cient TFRecord format (see Section 5 in Janssen et al. (2025a)).
Based on this self-contained uniform data format, any kind of
TensorFlow ANN can be trained and used for inference, inde-
pendent from the type of input data. Zingularity runs on CPUs,
a single GPU/TPU, or through distributed computing on multi-
ple GPUs/TPUs. Bootstrapping methods, where Ũ is resampled
based on known C̃, are implemented as well. For each resampled
dataset, the surrogate posterior qφ can be computed efficiently for
inference.

Figure 2 shows an overview of the complete Zingularity
processing chain from the input data to posteriors; how the train-
ing data are produced from the GRMHD models, how the ob-

4 https://gitlab.com/mjanssen2308/zingularity
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output layer.

servational data are processed, and the parallels between the
observation and theory processing chains. The integration of
the vlbimonitor (Event Horizon Telescope Collaboration et al.
2019a), Open Science Grid (Pordes et al. 2007; Sfiligoi et al.
2009), and CyVerse data storage (Goff et al. 2011; Merchant et al.
2016) into a single pipeline with the Pegasus software (Deelman
et al. 2015) is described in Janssen et al. (2025a).

5.1. EHT GRMHD-GRRT network implementation

In this work, we used a BANN architecture that couples a
residual (ResNet) Convolutional Neural Network (LeCun et al.
1989, 1998; He et al. 2015) with several DenseVariational
fully connected layers performing variational inference (Fig-

ure 3). The implementation in Zingularity is done with
TensorFlow Probability (Dillon et al. 2017, Section 5.1.2), com-
bined with multiple regularization methods for an increased
model robustness (Section 5.1.3).

A deep architecture makes it possible for the network to pick
up complex data combinations as salient features, closure quanti-
ties for example. With the use of variational layers with trainable
weight distributions as hidden- and output layers, the BANN cap-
tures the epistemic and aleatoric uncertainties. These correspond
to uncertainties in the model and the data, respectively.

In the following subsections, we describe our BANNs used
to infer GRMHD-GRRT parameters from EHT observations as
implemented in Zingularity. The numerical values and method
implementations for all relevant parameters of the network are
listed in Table 2.

5.1.1. Input and output

Zingularity performs the conversion of the input data to
TFRecord files as a pre-processing step. The flexible conver-
sion pipeline can handle any type of labeled or unlabled data.
For full-polarization interferometric data, the real and imaginary
component arrays for each correlation product correspond to 8
input ‘channels’ in our neural network architecture. An initial
layer normalization (Lei Ba et al. 2016) is applied to the input,
where the normalization parameters are optimized using each
single example in a training batch.

The output layers consist of fully connected single Bayesian
variational neurons for each inference task: With linear activation
functions for a∗, Rhigh, and for Sgr A∗ also ilos as well as θPA. The
ϕmag classification is done with a softmax activation. The priors
and posterior functions used for the regression output layers are
the same as those used by the hidden layers. The hidden layers
(Section 5.1.2) model the data between the input and output. We
use a single chain of hidden layers and split only in the last output
layer. All of our Mout output layers are connected to same last
hidden layer, so we can infer dependences between M̃ parame-
ters. We have tested that using individual, distinct networks per
parameter does not improve the inference accuracy.

When applied to Sgr A∗ and M87∗, the BANN is trained for
Nep epochs (iterations over T̃ ). Nep is determined empirically
as the value where the loss L saturates. As studied by Genkin
& Engel (2020), the best stopping criterion is where the loss
curve starts developing a very shallow, plateau-like curve. When
training for longer, the network may fit to noise in the training
data. In practice, we determine the approximate saturation point
by eye for each model and then survey a range of Nep around it.
For Sgr A∗ we find two equally viable Nep of 50 and 60. Unless
stated otherwise, we are using the Nep = 60 trained network as
our fiducial Sgr A∗ model for the analyses presented in this work.

The hidden layers between the input and output are described
below.

5.1.2. Hidden layers

Generally, we need a BANN with sufficiently large trainable pa-
rameters Nfree, to be in an overparameterized “double descent”
regime (e.g., Belkin et al. 2019; Schaeffer et al. 2023). Addition-
ally, we strive for deeper rather than wider networks by having
more layers and fewer neurons per layer. In practice, our net-
work widths are based on the input data size and computational
limitations. Network depths are increased until no further im-
provements in validation errors are gained. We experimented
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with different BANN architectures and selected the one with the
best performance in our parameter surveys described later in this
manuscript.

The combination of convolution operations and skip connec-
tions in the ResNet enables an in-depth modeling of the data to
pick out the salient features in the data (i.e., which locations in
time-baseline space and combinations of the visibility data are the
most informative for the M̃ parameter inference in the presence
of C̃). The Bayesian nature of the variational layers enables us
to see parameter dependences and uncertainties in the posteriors
formed from the ResNet pre-processed data.

ResNet blocks: The input visibilities are time-baseline sorted
into a two-dimensional (8,Nvis) shape. Initially, the data flows
through Nconv = log2 Nvis ResNet blocks.

Each block has the same architecture, where the data are
passed through two parallel branches. The first branch consists of
two consecutive and identical sub-blocks. In these sub-blocks, the
data first flows through a convolution layer with αn filters/neurons,
then a Batch normalization layer (which normalizes the input per
training batch), and finally a layer with activation function f . For
the ResNet block number n = 1, 2, ...,Nconv, we have

αn = (nCNNb)1− n
Nconv (nCNNl)

n
Nconv . (1)

Each convolution filter αn has a receptive field of size kconv. The
purpose of these operations is to extract the most meaningful
locations and combinations of the data in terms of information
content. We thus refer to this as modeling branch.

The second branch is a skip connection, where the data flows
through one layer with αn convolution filters, each having a re-
ceptive field of one (to have a matching dimension of the data
with the modeling branch), followed by Batch normalization.

The output of the two branches are then added and passed
through another activation f . Finally, the data are downsampled
by a factor of two in an average pooling layer. The data in the last
ResNet block will have a dimension equal to nCNNl.

The initial weight parameters of each convolution layer are
drawn from a uniform distribution between ±

√
6/NI+O, where

NI+O is the number of input plus output units (Glorot & Bengio
2010). Bias terms are initialized as zeros.

Bayesian fully connected layers: After the ResNet blocks, the
data are passed through Ndense fully connected variational layers,
each having ndense neurons with activation function f .

Multivariate standard Normal distributions serve as prior for
the weights, while no variational inference is performed for the
bias terms. The surrogate posteriors are represented with trainable
Normal distributions.

We also tried network architectures that consisted only out of
Bayesian fully connected layers, without any convolution layers.
Overall, these had higher validation errors compared to our fidu-
cial ResNet+fully connected models. Yet, for M87∗ the parameter
inference on observational data gave consistent results (Janssen
et al. 2025b). For Sgr A∗, it was difficult to find robust network
architectures without convolutions through our parameter survey
method (Section 6.2).

5.1.3. Generalization

Overfitting is common in ML applications, as a model may train
itself on peculiarities of T̃ , which are not generally representative

for the underlying features of interest from M̃. Overfitting in
the traditional statistical sense can however be benign in deep
learning tasks: Neural networks can perform well, even with
perfect fits to training data when the sample size is much smaller
than the number of possible directions in parameter space that are
unimportant for predictions (e.g., Bartlett et al. 2020; Chatterji &
Long 2020). We strive for a model that generalizes well.

We split out a fraction ηval of T̃ as validation data. These data
are not used for training and can therefore be seen as uncharacter-
ized data Ũ that is unknown to the network. We check that our
performance metrics (Section 5.1.5) give the same answers for
the training and validation data.

Additionally, a Dropout regularization is employed, where
a fraction of ηdrop of each hidden layers’ neurons are randomly
deactivated in each forward pass when the network is trained
and inferences are made (Hinton et al. 2012; Wan et al. 2013).
The stochastic drops of neurons are akin to a random sampling
over different network architectures, thereby reducing noise in
the trained parameters.

Finally, L1 and L2 regularization losses are added to L with
rate hyperparameters of L1 and L2, respectively. By penalizing
the absolute value of the weights in the loss function, L1 steers
weights of neurons toward zero. As a result, the sparsity of the
network increases, as unimportant data pathways can be deacti-
vated. L2 penalizes the sum of the weights’ squares, steering them
toward smaller values. Smaller weights reduce the complexity of
the network and single weight outliers that have high values will
be strongly reduced.

In this work, we are surveying only small values of ηdrop, L1,
and L2. Larger values typically cause larger training losses with-
out improving validation errors.

5.1.4. Optimization algorithm

We use the RMSProp algorithm for the gradient descent along the
loss surface of our deep BANN, which is unlikely to get stuck
in a bad local minima (Choromanska et al. 2014; Kawaguchi
2016). With the simple stochastic gradient descent, we encoun-
tered problematic overfitting, where the training/validation loss
was decreasing/increasing. RMSProp keeps a moving average of
the square gradients and divides the gradient by the root of this
average. This enables a dynamic learning rate along each dimen-
sion of the gradient descent, which is not significantly slowed
down by gradients from past iterations. To increase the stability
of the network training, we also use an adaptive overall learn-
ing rate with a peak value of lr. Following Loshchilov & Hutter
(2016), Goyal et al. (2017), and He et al. (2018), we use an initial
linear learning rate warm-up from 10lr/Nep at the first epoch to
lr when 10 % of the epochs have been processed, followed by a
cosine decay. The rationale is to have an initially low learning rate
for numerical stability of the training of a network with initially
random parameters and to smoothly decrease the learning rate
when the BANN parameters are converging. The gradient descent
iteration through T̃ is done in small batches of size Nb.

5.1.5. Performance metrics

We use a mean absolute error metric to track the regression perfor-
mance of the network during the training for both the training and
validation data. For the classification, we measure the fraction
of correct predictions over the total number of predictions as the
network’s accuracy.
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We typically report only the average performance metrics for
all training and validation T̃ . In principle, it would also be possible
to look at the network performance for distinct M̃ parameter
regions. Yet, parameter-dependent network performances will be
evident in the Ũ posteriors, which are the final information of
interest; if the inferred parameters are in a region of good/poor
network performance, the posteriors will be narrow/wide. In the
same vein, the BANN can deal with parameter degeneracies.

5.2. Bootstrapping of known data corruption effects

Within the generic Zingularity bootstrapping framework, we
resample uncharacterized EHT visibilities with C̃ in the following
order:

1. Per-antenna polarization leakage terms D (Event Horizon
Telescope Collaboration et al. 2021a).

2. Per-antenna amplitude gain errors. Typically, these are as-
sumed to be O(10 %) for all stations. Here, we adopt a more
precise description. From the gain (DPFU) measurements of
each antenna, we take the determined statistical Gscatter uncer-
tainty from the measurement error into account. Separately,
we group the APEX, IRAM 30m, LMT, and SPT stations and
add a commonGplanet uncertainty based on the accuracy of the
model used for the common solar system object (Saturn) that
served as a primary calibrator. For all other stations, Gplanet
is added independently as different primary calibrators were
used (Janssen et al. 2019a).

3. Per-antenna gain curve uncertainties. For the fitted gain curves
as a function of elevation E, gc(B, E0; E) = 1 − B (E − E0)2,
statistical gcB and gcE0 uncertainties from the fit are taken into
account (Janssen et al. 2019a). These are usually ignored, but
they can become important for data taken at low elevations.

4. Per-baseline thermal noise. These are taken from the CASA
SIGMA estimator of the visibilities themselves (see, e.g., Sec-
tion 2 of Janssen et al. 2019b).

The magnitude of these corruptions is given in Table 2. For
each resampled dataset, we draw many times from the network’s
posterior (a forward pass takes only a few seconds of compu-
tational time) to take the combined uncertainties into account
and obtain conservative results. We find bootstrapping to be use-
ful for ensuring that the trained BANN does not overfit on data
corruption effects.

5.3. Software architecture and scientific reproducibility

We host Zingularity on GitLab.5 The software is freely available
under the GNU General Public License. All configuration options
are set with a single YAML input file. We implemented a deter-
ministic random number seeding for TensorFlow in Zingularity.

Using a Continuous Integration / Continuous Delivery setup,
with every code change we automatically run unit tests, deploy
a containerized Docker6 version of the software, and generate
documentation with Doxygen.7 A Docker container for every git
commit hash is available online.8

The results shown here are derived with Zingularity version
1.0.0, which is based on TensorFlow version 2.5.0. The Docker
5 Accessible under
https://gitlab.com/mjanssen2308/zingularity
6 https://www.docker.com/
7 https://www.doxygen.nl/
8 https://hub.docker.com/r/mjanssen2308/zingularity

container 36d816a5d063e673f7502a8aa2eaf4a870431a029

can be used to reproduce the results with the
zingularity-EHT2017 configuration files for Sgr A∗
and M87∗ that are stored in the container under
/usr/local/src/zingularity/input_examples. The
synthetic data used for the network training in this work are
described in Janssen et al. (2025a).

5.4. Computational efficiency

The TensorFlow backend of Zingularity is optimized for CPUs,
GPUs, and TPUs. Through the TensorFlow reader of TFRecord
files, Zingularity efficiently shuffles the input randomly, caches
and pre-fetches data for multiple training epochs, and splits the
features into small batches for the training. These optimizations
result in an efficient interplay of GPU/TPU and CPU computa-
tions.

Moreover, we shard the TFRecord input, which enables par-
allel read access for the training. This is utilized with Zingularity
through an Horovod (Sergeev & Del Balso 2018) implementation
of distributed computing. The Horovod parallelization speedup
can be configured with the NVIDIA Collective Communication
Library version 2 (NCCL 2) or any proprietary MPI implemen-
tation for GPUs that support the allreduce or allgather,
broadcast, and reducescatter operations. The open-source
MPI implementations are usually not as fast and, by default, are
used only when NCCL is unavailable. The Horovod Tensor Fu-
sion offers an additional computational acceleration by batching
together as many tensors, that are queued to be processed, as
possible into a single allreduce operation.

Distributed computing benchmark tests presented in Sergeev
& Del Balso (2018) demonstrated the efficient scalability of
Horovod over native TensorFlow on up to 128 GPUs. As a future
outlook, we note the ongoing quantum machine learning develop-
ments of our underlying TensorFlow framework following the
latest quantum hardware advancements (Broughton et al. 2020).

GPU-based correlators offer fast and energy-efficient process-
ing platforms for astronomical interferometers, which scale well
for a large number of antennas. Novel correlator designs make
use of the tensor core technology of new GPUs, which is yet
more efficient (Romein 2021; Yu et al. 2023). It is worth not-
ing that such computing platforms would be perfectly suitable
for TensorFlow-based applications such as Zingularity during
telescope downtime.

Taking one of our BANNs with 12 million trainable param-
eters as a representative example, we found that a full iteration
(training epoch) over 600,000 datasets, each with 21,956 visi-
bility data points, takes 30 seconds on a single NVIDIA A100
GPU. Obtaining 100 posterior samples from 100 bootstrapped
Ũ takes 20 seconds. We have used the containerized version of
Zingularity through Apptainer (formerly Singularity, Kurtzer
et al. 2017) for these tests.

6. Validation

6.1. Training diagnostics

Zingularity launches the TensorBoard visualization and diag-
nostics toolkit from TensorFlow. The dashboard shows the evolu-
tion of losses, performance metrics, as well as biases and weights
for each layer. Additionally, a graph of the neural network can

9 https://tinyurl.com/3m49tm7e
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Fig. 4. Performance metrics for the Sgr A∗ and M87∗ network training are displayed for various dedicated Zingularity validation tests as described
in Section 6. The validation error is computed from normalized labels of validation data not seen by the network during training. The mean absolute
error (MAE) is computed as the average over all validation samples for normalized regression labels. The classification error (Class. error) is
defined as one minus the network’s accuracy, i.e., the fraction of misclassified validation samples. For some studies, the classification errors get
numerically close to zero beyond the logarithmic y-axis limit displayed in the figure. Training errors (not shown here) follow the validation curves
with a constant (negative) offset, as is typical for neural networks (e.g., Advani & Saxe 2017). For the M87∗ data, ilos and θPA are fixed. The training
of the fiducial models is shown only up to the determined Nep.

be displayed. Together with integrated features such as the What-
If-Tool (Wexler et al. 2019), TensorBoard is an Explainable AI
feature, which helps with the identification of salient features
in the data and understanding of the choices made by neural
networks. We have performed several targeted validation tests
with the help of TensorBoard data. Unless stated otherwise, we
have used the full standard training sets with 600,000 samples
for M87∗ and 252,000 samples for Sgr A∗. Figure 4 shows the
results of these Zingularity tests:

(a) fiducial M87∗ model – we show the training performance met-
rics for our EHT 2017 M87∗ model described in Section 5.1.

(b) M87∗ alternative hyperparameters – we show how well our
EHT 2017 M87∗ model performs with a different set of
f = ReLU, Ξ = stochastic gradient descent (SGD), ηdrop =
0,L1 = 0,L2 = 0.05 hyperparameters as opposed to those
listed in Table 2, using the same nCNNl : Ndense × ndense layout.

(c) M87∗ 256 : 5 × 256 alternative model – instead of the de-
fault (nCNNl = 128) : (Ndense = 15) × (ndense = 128) ResNet

model, we show how well a 256 : 5 × 256 model performs
for the M87∗ training data in comparison, using the same
hyperparameters.

(d) model variability – prompted by intrinsic model variability
being the dominating source of noise in our synthetic data
(Event Horizon Telescope Collaboration et al. 2019e; Satapa-
thy et al. 2022; Event Horizon Telescope Collaboration et al.
2022e; Janssen et al. 2025a), we have tested if our model
overfits to the time-evolution of our training data. We have
turned off the random shuffling of M87∗ training data and
used a ηval = 0.5 split across the number of GRMHD-GRRT
image frames for each model. The training was done with syn-
thetic data generated from the first 50 % of model frames and
validation with the latter 50 %. Here, we have used 450,000
training samples.

(e) model variability control – as a control study and baseline for
the model variability, we have done the same as above but
with the random shuffling enabled again.
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(f) fiducial Sgr A∗ model – we show the training performance
metrics for our EHT 2017 Sgr A∗ model described in Sec-
tion 5.1.

(g) Sgr A∗ 1024: 6 × 64 alternative model – we show how well
an alternative nCNNl = 1024,Ndense = 6, ndense = 64 model
performs for the Sgr A∗ training data.

(h) Sgr A∗ Stokes I – we show the performance of our fiducial
Sgr A∗ model when trained on only Stokes I data instead of
the full polarization information content from all correlation
products. Here, we have used 30,000 training samples.

(i) Sgr A∗ thermal-noise-only data – instead of doing the full
Symba forward modeling for S̃ (Janssen et al. 2025a), we have
created 25,000 Sgr A∗ training samples with only thermal
noise added as C̃.

The training of our fiducial BANNs has converged with low
error rates. Most noticeably, the MAD/SANE magnetic states
are easily distinguishable for the standard sets of models in our
classifiers. The performances of our BANNs are unaffected by
small changes in the networks’ architectures and hyperparameters.
We see smaller validation errors for M87∗ compared to Sgr A∗,
which is most likely due to a combination of two effects. Firstly,
we have 2.4 times more training data for M87∗. Secondly, the
intrinsic model variability of Sgr A∗ within a single training
sample translates into additional noise for the parameter inference.
For the M87∗ models, Rhigh shows the highest validation errors,
probably because Rhigh has not much influence on the GRRT
image morphology for MAD models (Event Horizon Telescope
Collaboration et al. 2019d).

The model variability tests show that our network is able to
generalize well, as our control study has the same magnitude of
validation errors. The robust data features used for the model
parameter discrimination are not bound to the particular image
snapshot realizations of the time-variable source structure. We
note that both the Sgr A∗ and M87∗ models show substantial in-
trinsic time variability, but on different time scales. While Sgr A∗
varies within EHT observing tracks, M87∗ allows for a cleaner
variability study with a clear cut across single model frames per
observing track. Given that our fiducial model performs substan-
tially better than our variability studies, we see that a sufficiently
large training dataset of several hundred thousand samples is
needed to bring down BANN errors to low levels.

Without the polarization information and with only a few Ntr,
our Sgr A∗ models perform poorly and are barely being trained at
all. The polarization has the biggest impact on the MAD/SANE
classification, which is evident from the direct relation to the
magnetic field structure. For spin measurements, a recent analysis
by Ricarte et al. (2023) has shown the importance of the linear
polarization structure.

When only thermal noise is added as C̃, the validation errors
are strongly reduced, even when only a few Ntr are used. A neural
network trained on synthetic data with lacking noise properties
will thus likely overfit on observational data.

6.2. Network hyperparameter survey

Small parameter surveys have been performed to find the fiducial
hyper-parameters for M87∗ and Sgr A∗ listed in Table 2. We
surveyed

– ηdrop = (0, 0.01, 0.02),

– L1 = (0, 0.01, 0.02),

– L2 = (0, 0.01, 0.02).

– Nep = (50, 60, 75, 100, 200).

We ran every parameter combination thrice for each source with
different seed values for the BANN initialization at the start of
training. We identify networks as viable and stable when the loss
is low and the three differently instantiated networks agree within
10 % for all inferred parameters. The parameter inference is com-
puted for many bootstrapping realizations from the observational
M87∗ and Sgr A∗ Ũ EHT data plus a few randomly selected
validation data samples.

As the bootstrapping C̃ is already incorporated into S̃ and by
pre-selecting networks with low validation errors, our stability
criterion for the validation data is almost always fulfilled by con-
struction. For Ũ, the hurdle for the network to robustly generalize
is higher. Typically, we see consistency across hyperparameters
and different viable network architectures with some outliers oc-
curring for a single inferred parameter for a particular random
seed. We have rejected networks where such stochastic outliers
can appear.

6.3. Parameter inferences of test datasets

So far, we have established that our fiducial BANN models give
reliable results also on data not seen during training. However, all
synthetic observations used so far were based on the same type of
kharma GRMHD-GRRT models (Wong et al. 2022; Prather et al.
2021). In this section, we describe inferences on test datasets
that were obtained from a different kind of simulation model:
GRMHD runs from the bhac code (Porth et al. 2017) ray-traced
by raptor (Bronzwaer et al. 2018, 2020). The consistency be-
tween our different codes has been established, but we are using
different setups and assumptions in our different code libraries. As
explored in Event Horizon Telescope Collaboration et al. (2022e,
2024), kharma and bhac models show significant differences in
the standard EHT model scoring cuts and different assumptions
on adiabatic indices during ray-tracing impact the electron tem-
perature as well as polarimetric quantities. Hence, synthetic data
from bhac-raptor models can be used to test the robustness of
our physical parameter inference with respect to nuisance vari-
ables in a comparison with the standard EHT model scoring.
As an additional check concerning the known issue of GRMHD
model variability, we note that the Sgr A∗ test data model images
are sampled with a cadence of 200 s as opposed to the 100 s of
our standard models used for training and validation. Synthetic
datasets are formed from movies of many frames over the course
of a Sgr A∗ EHT VLBI observing track. The test data can be used
to make a final model selection in case the parameter surveys
leave multiple equally viable models.

We investigated the following models:

1. M87∗, SANE, a∗ = 0, Rhigh = 40.

2. M87∗, MAD, a∗ = −0.6, Rhigh = 160; a∗ falling outside of
the grid of sampled parameters in the models used for the
training data.

3. Sgr A∗, SANE, a∗ = 0.94, Rhigh = 1, ilos = 70◦.

4. Sgr A∗, MAD, a∗ = −0.1, Rhigh = 30, ilos = 40◦; a∗, Rhigh, ilos
falling outside of the training data grid.
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Fig. 5. Inference results on M87∗ (top row) and Sgr A∗ (bottom row) test datasets created from differing simulations (described in Section 6.3) with
our fiducial BANN. The corner plots give the inferred parameters. Ground truth values are labeled in the top right corners. For the magnetic state, a
value of zero corresponds to a certain SANE classification and a value of one to a certain MAD classification.

Parameter inferences are obtained with 1000 bootstrapping real-
izations times 1000 posterior draws. The test results are shown in
Figure 5. The two left panels show models with parameters that
fall within the training data grid. We ascribe the small Rhigh and
ilos errors to the aforementioned differences in ray-tracing.

The M87∗ a∗ = −0.6 model shows a multimodal posterior as
the network cannot unambiguously associate the data features
with the closest matching models from the training data. Even

though the ground truth parameters are in the posterior, this test
presents a failure mode of the network. The Sgr A∗ MAD, a∗ =
−0.1, Rhigh = 30, ilos = 40◦ model has been misidentified as
SANE, a∗ = −0.9, Rhigh = 160, ilos = 80◦ model. The Figure 6
visibility data comparison for three Sgr A∗ models explains this
discrepancy and elucidates the fiducial data features identified
by the BANN. We denote the studied synthetic data as follows:
A for the SANE, a∗ = −0.94, Rhigh = 160, ilos = 70◦ data, B for
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Fig. 6. Normalized visibility amplitudes and phases in degrees (deg) color-coded by I, Q,U Stokes parameters with standard deviation error bands
computed from 100 synthetic data realizations of 2017 Sgr A∗ EHT observations with corresponding (u, v) coverage are displayed. The parameters
for the three models considered here are given in the top left corners of the amplitude plots in the left column: a S(ANE) model in the top row and
two different M(AD) models in the middle and bottom rows. The model in the middle is from test data, which has smaller error bars because the
underlying simulation was run for a shorter time, leading to a smaller model variability.

MAD, a∗ = −0.1, Rhigh = 30, ilos = 40◦, and C for MAD, a∗ = 0,
Rhigh = 40, ilos = 30◦. B is our test data, C is training data with
the closest matching parameters to B, and A is training data with
the closest matching parameters to the posterior obtained from
B (Figure 5). Both A and B have matching Q andU amplitudes,
while C shows clear offsets. The amplitude differences between
Q, U and I are also similar for A and B, but much smaller for
C. For the phases, Q and U are constant at the short baseline
around 1 Gλ for C, while A and B display variability. Similarly,
theU and particularly Q phases vary much more with baseline
length for A and B compared to C. All in all, it is not surprising
that model A parameters are inferred from B, given the similarity
of the visibilities.

Hence, the B misidentification is due to the limited grid of
model parameters in the training data, which in turn is a result
of the computational cost of GRMHD simulations. This exercise
highlights the model-dependence of our method. The inference
results point to an interpolated parameter space of the GRMHD-

GRRT training data models. Note that the standard EHT model
scoring suffers from the same problem, being restricted to the
same type of sparsely sampled model libraries. Ideally, we would
have a finer model parameter grid to include data like B in T̃ . A
better trained BANN could then either be sufficiently complex to
be able to distinguish between A and B or the learned similarity
between models would show up as uncertainty in the posterior,
similar to the multimodal posterior of the M87∗ a∗ = −0.6 model.

Through our hyperparameter surveys and test data inferences,
we have identified the best BANNs for Sgr A∗ and M87∗. In
Janssen et al. (2025b), we will use these fiducial models for
inference rather than averaging results over many models that
would be acceptable but have worse performance. As opposed to
the very small validation errors from the training diagnostics, the
posteriors shown in this section give more realistic indications of
the true inference uncertainties of our BANNs, which in the end
depend on the specific input data Ũ.
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7. Summary and conclusions

In this second manuscript from a series, we presented our
open-source Zingularity framework for computationally efficient
BANN training, validation, and inference. As a first Zingularity
application, we used a comprehensive GRMHD-GRRT library
of synthetic mm VLBI observations, to study how well physi-
cal parameters of the Sgr A∗ and M87∗ AGN systems can be
constrained with observations of the EHT. We described our end-
to-end pipeline, from the theoretical source models and observa-
tional data to the final posteriors. For scientific reproducibility,
we made use of an open-source workflow management system
and containerized versions of our synthetic data generation and
machine learning software.

Compared to similar studies in the literature, we included a
wider range of theoretical models and ensured that the intrinsic
model variability was properly managed. From these models, we
created a comprehensive library of mock EHT observations. We
considered a wide range of data corruption effects, both in the
realistic synthetic data generation and the bootstrapping of un-
certainties in the parameter inference process. Furthermore, we
circumvented coherence losses and influences of data calibration
methods on the measurements. The influence of coherence losses
in the EHT data is described in Section 3.3 of Event Horizon Tele-
scope Collaboration et al. (2022a), for example. Here, we could
use the full-Stokes information content of visibilities averaged
in short (10 s) time bins with small computational costs, thanks
to efficient algorithms and data formats within the TensorFlow
framework. Influences from the use of particular data reduction
strategies are visible in the geometric modeling results of the
April 6, 2017 Sgr A∗ EHT data shown in Figure 30 of Event
Horizon Telescope Collaboration et al. (2022c), for example. De-
pending on the chosen modeling parameters, the fits converged to
different values for the ring diameter, asymmetry, and position an-
gle for the same data when it is calibrated with different methods.
Here, we incorporated the same, (upgraded, Janssen et al. 2025a)
calibration process in the training and observational data, thus
ensuring that calibration-specific biases on the visibilities were
not erroneously being picked up as model-dependent features.

Through hyperparameter surveys and dedicated inference
runs on test datasets, which also include actual observational
data to bridge the synthetic gap, we were able to i) weed out
BANN architectures that yield spurious results from problematic
overfitting on the training data, ii) uncover the inner workings
of our networks, and iii) identify shortcomings in the training
data sampling and the associated uncertainties on our parameter
inferences. We found the training of our final selection of fiducial
BANNs to be well converged with low validation errors and
robust against variations in the network (hyper-)parameters. We
can deal with the intrinsic variability of our models through our
networks’ ability to generalize well.

We demonstrated the importance of utilizing the full vis-
ibility data content for the BANN training – the polarization
information is essential for the GRMHD parameter inference,
particularly for the MAD–SANE magnetic field configuration.
Additionally, showed that a sufficiently large training dataset is
needed to achieve low validation errors and that realistic forward
modeling is required for the training data generation. When the
multitude of additional data corruption processes affecting EHT
data are ignored, artificially low errors are obtained. Thus, a net-
work trained on data where only thermal noise is added would
be sensitive to data corruption effects present in observational
data, leading to incorrect parameter inferences. Shortcomings
in previous machine-learning-based EHT analyses can likely be

explained by a combination of these three effects: not enough
training data, not utilizing the full information content of the data,
and not taking into account all relevant data corruption effects.

8. Outlook

The parameter posteriors obtained by fitting the trained BANNs
to observational EHT data are presented in Janssen et al. (2025b).
Beyond the models studied in this work, one could consider the
effects of particle acceleration (e.g., Dexter et al. 2012; Dave-
laar et al. 2018, 2019, 2020; Yao et al. 2021; Chatterjee et al.
2021; Cruz-Osorio et al. 2022; Fromm et al. 2022; Zhao et al.
2023), alternatives to the Rhigh electron temperature prescription
and heating plus cooling effects (e.g., Dibi et al. 2012; Sądowski
et al. 2013; Ressler et al. 2015; Sądowski et al. 2017; Chael
et al. 2018; Ryan et al. 2018; Chael et al. 2019; Anantua et al.
2020; Yoon et al. 2020; Mizuno et al. 2021; Salas et al. 2025;
Mościbrodzka 2025), nonideal MHD and magnetic reconnection
(e.g., Ripperda et al. 2019, 2020; Chashkina et al. 2021; Rip-
perda et al. 2022; Nathanail et al. 2022; Crinquand et al. 2022),
pair production (e.g., Mościbrodzka et al. 2011; Crinquand et al.
2020), gas compositions other than pure hydrogen (e.g., Wong
& Gammie 2022), tilted accretion disks (e.g., Fragile et al. 2007;
McKinney et al. 2013; Morales Teixeira et al. 2014; White et al.
2019; Liska et al. 2019; Chatterjee et al. 2023), different boundary
conditions of the accretion flow (e.g., Shcherbakov & Baganoff
2010; Ressler et al. 2018; Olivares et al. 2023), improved approx-
imations for synchrotron radiative transfer calculations (Davelaar
2025), and further non-Kerr models included in more advanced
GRMHD-GRRT simulations in the future. Moreover, by employ-
ing frequency-resolved data, we could use spectral indices as well
as rotation measures as discriminating model features, and would
benefit from multifrequency synthesis (Conway et al. 1990). We
also note the possibility of training on data from multiple observ-
ing days. Finally, the Zingularity application to EHT data de-
scribed here can easily be extended to AGN jets observed at larger
scales (e.g., Fromm et al. 2016, 2019; MacDonald & Nishikawa
2021). Incorporating jet emission and higher energy emission
observations will lead to an improved inference, particularly for
the electron distribution function.
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Appendix A: Theory of a supervised Bayesian
feedforward neural network

In a feedforward ANN, information flows only in one direction,
from the first, to the second, to the third until the final output layer.
Here, we give a brief mathematical description of such networks.
We make use of the following naming conventions:

– M are the total numbers of layers in the network. Individual
layers are numbered as m = 0, 1, 2, ...,M − 1. Each layer
consists of a number of neurons.

– Xm is the output data of layer m − 1 and input data of layer
m. X0 ∈ T̃ is the input data of the network (i.e., a tensor
of features that the network trains on). XM are the output
predictions of the network. We denote the output of a specific
neuron j in the mth layer with x( j)

m .
– Y are the labeled targets of the training data T̃ that will be

compared against XM for supervised learning. These are inte-
ger representations when X0 belongs to specific classes that
are to be identified and/or real numbers for regression tasks
of continuous variables of interest belonging to X0.

– L is the loss function used to compute the error E between the
target Y and predicted XM outputs as E = L(Y, XM). Together

with a learning rate lr, this error is used to update (train) the
weights of the network.

– fm are activation functions used for layer m. These functions
have to be nonlinear if the network is to learn nonlinear be-
havior in the input data Xm. In recent years, the rectified linear
unit fm(z) = max(z, 0) (ReLU, Hahnloser et al. 2000) has
frequently been used.

Depending on the dimensionality of the data as it is passed
through the network, Xm can be a highly dimensional tensor. With
the above conventions, the output of layer m of an ANN can be
written as

Xm+1 = fm (Wm · Xm + Bm) . (A.1)

Here, Wm and Bm are the tunable weight and bias tensors of
layer m that are being fitted while the network is being trained.
The weights are multiplied with the output of the previous layer
and therefore depend on the dimensionality of Xm and the spec-
ified output dimension Dm ≡ dim(Xm+1). Single bias terms are
added to the output of each neuron. The dimensionality of B
therefore depends only on Dm. We denote Wm · Xm + Bm as the
weighted input Zm of the layer m. The input to a specific neuron
j will be written as z( j)

m .
We can now write the ANN algorithm in functional form as

F ({W}, {B}; X0) = fM−1 (WM−1 · fM−2 (WM−2 · fM−3 (· · · f1 (W1 · f0 (W0 · X0 + B0) + B1) + ... + BM−3) + BM−2) + BM−1) .

Here, {W} and {B} denote the sets of all weights and biases
that we will be optimizing, respectively. We denote individual
weights of the connection between the kth neuron in the (m − 1)th

layer to the jth neuron in the mth layer as w( jk)
m . Similarly, b( j)

m will
be the bias of the jth neuron in the mth layer. Two commonly used
types of layers, are 1) fully connected layers, where each neuron
j in the layer is connected to each neuron k in the previous layer
and 2) convolution layers (LeCun et al. 1989, 1998), which can
be seen as having a small receptive field where most entries of W
are zero: each neuron j is only connected to a few neurons in the
previous layer. Convolution layers form the basis of convolutional
neural networks (CNNs).

For multidimensional prediction problems, individual parallel
output layers are commonly used for each individual regression
and classification task. All of these output layers are connected
to the same second to last layer in a feedforward ANN. Typi-
cally, linear activation functions are used for regression and the
softmax function σs is used for classification. Given a vector
s = (s1, s2, ..., sNc ) for Nc different classes, σs : RNc → [0, 1]Nc

computes the probability of each class as

σs(si) =
esi∑Nc

j=1 es j
for i = 1, 2, ...,Nc . (A.2)

For multidimensional prediction problems, the target labels
Y have to be normalized to ensure an equal weighting for all
predictions in the loss L.

Below, we describe the backpropagation algorithm, which
is widely used to update

{
w( jk)

m

}
and

{
b( j)

m

}
during the training of

ANNs.

Initially, {W} and {B} are set based on some a priori assump-
tions or randomly. In a forward pass through the network, F is
computed to determine L(Y, XM).

For a neuron j of the last layer, we can compute

δ
( j)
M−1 =

∂L

∂x( j)
M−1

f ′M−1

(
z( j)

M−1

)
. (A.3)

Here, we use the Lagrange prime (′) notation for a deriva-
tive. Subsequently, we can form the equivalent quantity for the
complete last layer:

δM−1 = ∇X(L) · f ′M−1 (ZM−1) . (A.4)

Starting with the last layer, we can propagate backwards
through the network layer by layer to compute

δm = f ′m (Zm) ·Wm+1 · δm+1 (A.5)

for m = M − 2,M − 3, ..., 0. The individual δ( j)
m are computed in

the same way. Using a learning rate lr ≤ 1 to control the step size,
each individual weight and bias parameters are then updated with

lr
∂L

∂w( jk)
m

= lr x(k)
m−1δ

( j)
m , (A.6)

lr
∂L

∂b( j)
m

= lrδ
( j)
m . (A.7)

In practice, a stochastic gradient descent is used for computa-
tional speed. Instead of computing F and L for the full dataset,
we train on batches of size Nb at a time.
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Appendix A.1: Bayesian variational inference

Starting with Bayes’ theorem, the probability P as a measure of
belief for a set of neural network parameters H given data X can
be written as

P(H|X) =
P(X|H)P(H)

P(X)
=

P(X|H)P(H)∫
H P(X|h)P(h)dh

. (A.8)

Here, P(X|H), P(H), P(X), P(H|X) are the likelihood, prior,
evidence, and posterior, respectively. The difficulty in sampling
the posterior arises from the computational cost of evaluating the
evidence integral. Following Valentin Jospin et al. (2020), we
will now describe the variational inference method that is imple-
mented in the Bayesian ANN (BANN) framework Zingularity
and used to sample from a surrogate variational distribution
qφ(H) ∼ P(H|X) instead of the exact posterior.

For non-Bayesian ANNs, w( jk)
m and b( j)

m are trained as single
numbers. As such, F provides point estimates for inference and
forward passes during training. Bayesian networks fit trainable
distributions for w( jk)

m and b( j)
m (MacKay 1992; Hinton & van

Camp 1993; Graves 2011; Blundell et al. 2015). For inference
and forward passes, values are then drawn stochastically from
the weight and bias posteriors. The variational distribution is
given by the combined distributions of all layers, parameterized
by φ. During training, φ are optimized by minimizing the Kull-
back–Leibler divergence DKL (Kullback & Leibler 1951), such
that qφ(H) approximates P(H|X) as closely as possible:

DKL(qφ||P) =
∫

H
qφ(h) log

(
qφ(h)

P(h|X)

)
dh . (A.9)

Computing DKL directly is expensive due to the integral over
P(h|X). Instead the evidence lower bound E is commonly evalu-
ated:

EX(qφ||P) ≡

∫
H

qφ(h) log
(

P(h, X)
qφ(h)

)
dh (A.10)

= log (P(X)) − DKL(qφ||P) . (A.11)

Here, P(h, X) is the joint probability of h and X. As the evi-
dence P(X) does not depend on q, maximizing EX(qφ||P) is equiv-
alent to minimizing DKL(qφ||P).
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